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An Introdution to RenormalizationVinent RivasseauLaboratoire de Physique Th�eoriqueUniversit�e Paris XIF-91405 Orsay CedexAbstrat. We review the theory of perturbative renormalization, disuss its limitations, and give abrief introdution to the powerful point of view of the renormalization group, whih is neessary to gobeyond perturbation theory and to de�ne renormalization in a onstrutive way.1 IntrodutionThe preise quantitative formulation of physial laws usually requires to introdue partiular pa-rameters or onstants. It was early reognized that interation with a partiular medium or sub-strate an hange the e�etive value of these onstants. For instane Desartes laws for the refra-tion of light require a medium dependent index n and later Gauss's and Amp�ere's law introduedeletri or magneti permittivities whose values � and � in a non-empty medium suh as water orglass reet in a omplex way the interation of light with the atoms of this medium.Even more simply, Alain Connes's favorite examples of an interation that hanges even thesign of a physial parameter is that of Arhimedes: a body suh as a ping-pong ball immersed inwater aquires a negative e�etive mass. Although the mass of the ball m may be muh smallerthan the mass M of the same volume of water, the \e�etive mass" as experimentally measuredfrom the upwards aeleration of the ball is however limited by frition so that the true \negativee�etive mass" of the ball measured experimentally is muh smaller in modulus than m�M .New e�etive onstants for the often multipliative laws of physis an be onsidered asnew normalizations of these laws. This is probably the origin of the name \renormalization".But a risis ourred when physiists of the XXth entury realized that this hange of onstantsdue to interation is apparently in�nite in the ase of quantum �eld theory. This is disturbingbeause quantum �eld theory, whih ombines quantum mehanis and speial relativity, was atthat time onsidered the ultimate framework for the fundamental experimental laws of nature atthe mirosopi level1. Its onsisteny is therefore a matter of priniple, whose importane anhardly be overemphasized.The way out of this great \renormalization risis" is a long story whih required the e�ortsof many theoretial and mathematial physiists over the seond half of the XXth entury. I shallroughly divide it into two main hapters.First the struture of the in�nities or \divergenes" in physial quantum �eld theories suh aseletrodynamis was eluidated. A reursive proess, due to Bogoliubov and followers, was foundto hide these in�nities into unobservable \bare" parameters that desribe the fundamental laws ofphysis at experimentally inaessible extremely short distanes. Although tehnially very inge-nious, this solution left many physiists and probably most mathematiians under the impressionthat a real diÆulty had been just \pulled under the rug".It would be unfortunate however to remain under this impression. Indeed the seond hapterof the story, known under the urious and slightly inaurate name of the \renormalization group"(RG), truly solved the diÆulty. It was orretly reognized by Wilson and followers that in aquantum theory with many sales involved, the hange of parameters from bare to renormalizedvalues is a phenomenon too omplex to be desribed in a single step. Just like the trajetory of a1It is still today to a large extent, although string theory holds great promises for an even more fundamentaltheory that would enompass gravity and have a natural fundamental ultraviolet length sale, the Plank sale.



2 V. Rivasseau S�eminaire Poinar�eompliated dynamial system, it must be instead studied step by step through a loal evolutionrule. The hange of sale in the RG plays the role of time in dynamial systems. This analogy isdeep. There is a natural arrow of time, related to the seond priniple of thermodynamis, andthere is similarly a natural arrow for the RG evolution: mirosopi laws are expeted to determinemarosopi laws, not the onverse. The RG erases unneessary detailed short sale informationor \irrelevant operators". Even osmology made now everybody familiar with the idea that thepassing of time and the hange of sale in physis are intimately related.Apart from these almost philosophial omments, the RG improved point of view lead alsoonretely to many appliations in various domains, some of whih are also reviewed here. Whatseems less known, still today, is that RG also solved in a better way the old problem of in�nitiesin perturbation theory. In the RG, the in�nitesimal or disrete evolution under hange of sale isperfetly well de�ned and �nite. The old in�nities are reognized as artefats, due to an inorretinterhange of limits. In fat in the non-Abelian gauge theories whih are presently at the bakboneof the Standard Model, in�nities disappear ompletely. Even after integrating evolution over anin�nite sequene of intermediary sales, the RG ow remains perfetly bounded. The bare ouplingonstant, the ultimate \rug" under whih perturbative in�nities where supposed to hide, is in fatzero, the most �nite of all possible values!It is this amazing story that I will try to summarize in this note. As a testimony to itsentral plae in reent theoretial physis, let me simply reall the many Nobel prizes awarded formajor works on renormalization or related subjets. In 1965, R. Feynman, J. Shwinger and S.-I.Tomonaga reeived the Nobel prize for their formulation of quantum eletrodynamis, the �rsttheory to require renormalization. S. Glashow, S. Weinberg and A. Salam reeived the 1979 prizefor unifying eletromagneti and weak interations, two renormalizable �eld theories. In 1999, G.'t Hooft and M. Veltman reeived the prize for ahieving the proof of renormalizability of thiseletroweak theory and of non-Abelian gauge theories in general. In 1982 the Nobel prize wasawarded to K. Wilson for his invention of the renormalization group and its appliation to ritialphenomena. Finally, among other ontributions, P.G. de Gennes reeived the prize in 1991 forapplying RG results to polymer physis. Besides these Nobel-winning ontributions there have beenso many other important works on renormalization that it is truly impossible to give full justie toall of them. So let me apologize in advane and refer to books suh as [1, 2, 3, 4, 5, 6, 7, 8, 9, 10℄for more omplete referenes.2 Perturbative (Eulidean) Quantum Field Theory2.1 Funtional Integral and the �4 ModelQuantum Field Theory is the seond quantized formalism appropriate to treat in partiular theollision experiments of partile physis, in whih partile number is not onserved. Cross setionsontain the physial information of the theory. They are the matrix elements of the di�usion matrixS. Under a suitable asymptoti ondition, there are \redution formulae" whih express the matrixelements of S in terms of the Green funtions GN (or time ordered vauum expetation values) ofthe �eld �, whih is operator valued and ats on the Fok spae:GN (z1; :::; zN) =<  0; T [�(z1); :::; �(zN )℄ 0 > : (2.1)where  0 is the vauum state and T is an operator, alled T -produt, that orders a produt ofoperators suh as �(z1); :::; �(zN ) aording to inreasing times.Consider a Lagrangian �eld theory, and split the total Lagrangian as the sum of a free plusan interating piee, L = L0+Lint. The Gell-Mann-Low formula expresses the Green funtions asvauum expetation values of a similar produt of free �elds with an eiLint insertion:GN (z1; :::; zN ) = <  0; T��(z1); :::; �(zN )ei R dxLint(�(x))� 0 ><  0; T (ei R dxLint(�(x))) 0 > : (2.2)



Vol. 2, 2001 An Introdution to Renormalization 3In the funtional integral formalism proposed by Feynman [11℄, the Gell-Mann-Low formulais itself replaed by a funtional integral in terms of an (ill-de�ned) \integral over histories" whihis formally the produt of Lebesgue measures over all spae time. It is interesting to notie thatthe integrand appearing in this formalism ontains the full Lagrangian L = L0+Lint, not just theinterating one. The orresponding formula is the Feynman-Ka formula:GN (z1; :::; zN) == R Qj �(zj)ei R L(�(x))dxD�R ei R L(�(x))dxD� : (2.3)This funtional integral has potentially many advantages. First the rules of Gaussian inte-gration make perturbation theory very transparent as shown in the next subsetion. The fatthat the full Lagrangian appears in (2.3) is interesting when symmetries of the theory are presentwhih are not separate symmetries of the free and interating Lagrangians, as is the ase for non-Abelian gauge theories. It is also well adapted to onstrained quantization, and to the study ofnon-perturbative e�ets.There is a deep analogy between the Feynman-Ka formula and the formula whih expressesorrelation funtions in lassial statistial mehanis. For instane, the orrelation funtions for alattie Ising model are given by 
 nYi=1�xi� = Pf�x=�1g e�L(�)Qi �xiPf�x=�1g e�L(�) ; (2.4)where x labels the disrete sites of the lattie, the sum is over on�gurations f�x = �1g whihassoiate a \spin" with value +1 or -1 to eah suh site and L(�) ontains usually nearest neighborinterations and possibly a magneti �eld h:L(�) = Xx;y nearest neighborsJ�x�y +Xx h�x: (2.5)By analytially ontinuing (2.3) to imaginary time, or Eulidean spae, it is possible to om-plete the analogy with (2.4), hene to establish a �rm ontat with statistial mehanis [5, 6, 7℄.This idea also allows to give muh better meaning to the path integral, at least for a free bosoni�eld. Indeed the orresponding free Eulidean measure Z�1e� R L0(�(x))dxD�, where Z is a nor-malization fator, an be de�ned easily as a Gaussian measure. This is simply beause L0 is aquadrati form of positive type2.The Green funtions ontinued to Eulidean points are alled the Shwinger funtions of themodel, and are given by the Eulidean Feynman-Ka formula:SN (z1; :::; zN ) = Z�1 Z NYj=1 �(zj)e� R Li(�(x))dxd�0(�) (2.6)Z = Z e� R Li(�(x))dxd�0(�): (2.7)The simplest interating �eld theory is the theory of a one omponent salar bosoni �eld� with quarti interation g�4 (�3 whih is simpler is unstable). In Rd it is alled the �4d model.For d = 2; 3 the model is superrenormalizable and has been built by onstrutive �eld theory. Ford = 4 it is renormalizable in perturbation theory. Although the model laks asymptoti freedomand a non-perturbative version may therefore not exist, it remains a valuable tool for a pedagogialintrodution to perturbative renormalization theory.Formally the Shwinger funtions of the �4d are the moments of the measure:2However the funtional spae that supports this measure is not in general a spae of smooth funtions, butrather of distributions. This was already true for funtional integrals suh as those of brownian motion, whihare supported by ontinuous but not di�erentiable paths. Therefore \funtional integrals" in quantum �eld theoryshould more appropriately be alled \distributional integrals".



4 V. Rivasseau S�eminaire Poinar�ed� = 1Z e�(g=4!) R �4�(m2=2) R �2�(a=2) R (������)D�; (2.8)where� g is the oupling onstant, usually assumed positive or omplex with positive real part;� m is the mass; it �xes an energy sale for the theory;� a is the wave funtion onstant. We often assume it to be 1;� Z is a normalization fator whih makes (2.8) a probability measure;� D� is a formal produt Qx2Rdd�(x) of Lebesgue measures at every point of Rd .But suh an in�nite produt of Lebesgue measures is mathematially ill-de�ned. So it is betterto de�ne �rst the Gaussian part of the measured�(�) = 1Z0 e�(m2=2) R �2�(a=2) R (������)D�: (2.9)More preisely if we onsider the translation invariant propagator C(x; y) � C(x � y) (withslight abuse of notation), whose Fourier transform isC(p) = 1(2�)d 1p2 +m2 ; (2.10)we an use Minlos theorem and the general theory of Gaussian proesses to de�ne d�C(�) as theentered Gaussian measure on the Shwartz spae of tempered distributions S0(Rd ) whose ovari-ane is C. A Gaussian measure is uniquely de�ned by its moments, or the integral of polynomialsof �elds. Expliitly this integral is zero for a monomial of odd degree, and for n = 2p even it isequal to Z �(x1):::�(xn)d�C(�) =X Yl2 C(xi(l); xj(l)); (2.11)where the sum runs over all the pairings  of the 2p arguments into p disjoint pairs l = (i(l); j(l)).Note that sine for d � 2, C(p) is not integrable, C(x; y) must be understood as a distribution.It is therefore onvenient to also introdue a regularized kernel, for instaneC�(p) = 1(2�)d e��(p2+m2)p2 +m2 (2.12)whose Fourier transform C�(x; y) is now a smooth funtion and not a distribution. Suh a regu-larization is alled an ultraviolet uto�, and we have (in the distribution sense) lim�!0 C�(x; y) =C(x; y). Remark that due to the non zero m2 mass term, the kernel C�(x; y) deays exponentiallyat large jx� yj with rate m, taht is for some onstant K and d > 2 we have:jC�j(x; y)j � K�1�d=2e�mjx�yj: (2.13)It is a standard useful onstrution to build from the Shwinger funtions another lass offuntions alled the onneted Shwinger funtions (in statistial mehanis onneted funtionsare alled Ursell funtions or umulants). These onneted Shwinger funtions are given by:CN (z1; :::; zN) = XP1[:::[Pk=f1;:::;Ng;Pi\Pj=0(�1)k+1 kYi=1Spi(zj1 ; :::; zjpi ); (2.14)
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Vertices A Wick contractionFigure 1: A ontration shemewhere the sum is performed over all distint partitions of f1; :::; Ng into k subsets P1; :::; Pk, Pibeing made of pi elements alled j1; :::; jpi . For instane the onneted 4-point funtion, when allodd Shwinger funtions vanish due to the unbroken �! �� symmetry, is simply given by:C4(z1; :::; z4) = S4(z1; :::; z4)� S2(z1; z2)S2(z3; z4)�S2(z1; z3)S2(z2; z4)� S2(z1; z4)S2(z2; z3): (2.15)2.2 Feynman RulesThe full interating measure may now be de�ned as the multipliation of the Gaussian measured�(�) by the interation fator: d� = 1Z e�(g=4!) R �4d�(�) (2.16)and the Shwinger funtions are the normalized moments of this measure:SN (z1; :::; zN) = Z �(z1):::�(zN )d�(�): (2.17)This formula is espeially onvenient to derive the perturbative expansion and Feynman rules ofthe theory. Indeed, expanding the exponential as a power series in the oupling onstant g, oneobtains for the Shwinger funtions:SN (z1; :::; zN ) = 1Z 1Xn=0 (�g)nn! Z �Z �4(x)4! �n�(z1):::�(zN )d�(�) (2.18)It is now possible to perform expliitly the funtional integral of the orresponding polynomial. Theresult gives at any order n a sum over \Wik ontrations shemesW", i.e. ways of pairing together4n+N �elds into 2n+N=2 pairs. There are exatly (4n+N � 1)(4n+N � 3):::5:3:1 = (4n+N)!!suh ontration shemes.Formally at order n the result of perturbation theory is therefore simply the sum over all theseshemes W of the spatial integrals over x1; :::; xn of the integrand Ql2W C(xi(l); xj(l)) times thefator 1n! (�g4! )n. These integrals are then funtions (in fat distributions) of the external positionsz1; :::; zN But they may diverge either beause they are integrals over all of R4 (no volume uto�)or beause of the singularities in the propagator C at oiniding points.It is onvenient to label the n dummy integration variables in (2.18) as x1; :::; xn and to drawa line for eah ontration of two �elds. Eah position x1; :::; xn is then assoiated to a four-leggedvertex and eah external soure zi to a one-legged vertex, as shown in Figure 1.For pratial omputations, it is obviously more onvenient to gather all the ontrationswhih lead to the same topologial struture, hene the same integral. This leads to the notion ofFeynman graphs. To any suh graph is assoiated a ontribution or amplitude, whih is the sum of



6 V. Rivasseau S�eminaire Poinar�ethe ontributions assoiated with the orresponding set of Wik ontrations. The Feynman rulessummarize how to ompute this amplitude with its orret ombinatori fator.We always use the following notations for a graph G:� n(G) or simply n is the number of internal verties of G, or the order of the graph.� l(G) or l is the number of internal lines of G, i.e. lines hooked at both ends to an internalvertex of G.� N(G) orN is the number of external verties ofG; it orresponds to the order of the Shwingerfuntion one is looking at. When N = 0 the graph is a vauum graph, otherwise it is alledan N -point graph.� (G) or  is the number of onneted omponents of G,� L(G) or L is the number of independent loops of G.For a regular �4 graph, i.e. a graph whih has no line hooked at both ends to external verties,we have the relations: l(G) = 2n(G)�N(G)=2; (2.19)L(G) = l(G)� n(G) + (G) = n(G) + 1�N(G)=2: (2.20)where in the last equality we assume onnetedness of G, hene (G) = 1. We like to de�ne thesuper�ial degree of divergene. For �4d it is:!(G) = dL(G)� 2l(G); (2.21)so that for a onneted graph:!(G) = (d� 4)n(G) + d� d� 22 N(G): (2.22)It will be important also to de�ne what we all a subgraph. This is not a ompletely straight-forward notion. A subgraph F of a graph G is a subset of internal lines of G, together with theorresponding attahed verties. Hene there are exatly 2l(G) subgraphs in G. We all the lines inthe subset de�ning F the internal lines of F , and their number is simply l(F ), as before. Similarlyall the verties of G hooked to at least one of these internal lines of F are alled the internalverties of F and onsidered to be in F ; their number by de�nition is n(F ). But remark that noexternal vertex of G an be of this kind. Preisely for this reason, the notion of external vertiesdoes not generalize simply to subgraphs. Nevertheless for power ounting we need at least to de�nea generalization of the number N for subgraphs. A good onvention is to all external half-line ofF every half-line of G whih is not in F but whih is hooked to a vertex of F ; it is then the numberof suh external half-lines whih we all N(F ). With this onvention one has for �4 subgraphs thesame relation (2.19) as for regular �4 graphs.The de�nitions of ; L and ! then generalize to subgraphs in a straightforward way.To ompute the amplitude assoiated to a �4 graph, we have to add the ontributions of theorresponding ontration shemes. This is summarized by the rules:� To eah line lj with end verties at positions xj and yj , assoiate a propagator C(xj ; yj).� To eah internal vertex, assoiate (�g)=4!.� Count all the ontration shemes giving this diagram. The number should be of the form(4!)nn!=S(G) where S(G) is an integer alled the symmetry fator of the diagram. The 4!represents the permutation of the �elds hooked to an internal vertex.� Multiply all these fators, divide by n! and sum over the position of all internal verties.



Vol. 2, 2001 An Introdution to Renormalization 7The formula for the bare amplitude of a graph is therefore, as a distribution in z1; ::::zN :AG(z1; :::; zN) � Z nYi=1 dxi Yl2GC(xl; yl): (2.23)This is the \diret" or \x-spae" representation of a Feynman integral. As stated above, thisintegral su�ers of possible divergenes. But the orresponding quantities with both volume uto�and ultraviolet uto� � are well de�ned. They are:A�G;�(z1; :::; zN) � Z�n nYi=1 dxi Yl2GC�(xl; yl): (2.24)The integrand is indeed bounded and the integration domain is a ompat box �.The unnormalized Shwinger funtions are therefore formally given by the sum over allgraphs with the right number of external lines of the orresponding Feynman amplitudes:ZSN = X�4 graphs G with N(G)=N (�g)n(G)S(G) AG: (2.25)Z itself, the normalization, is given by the sum of all vauum amplitudes:Z = X�4 graphs G with N(G)=0 (�g)n(G)S(G) AG: (2.26)Let us remark that sine the total number of Feynman graphs is (4n+N)!!, taking into aountStirling's formula and the symmetry fator 1=n! from the exponential we expet perturbationtheory at large order to behave as Knn! for some onstant K. Indeed at order n the amplitude ofa Feynman graph is a 4n-dimensional integral. It is reasonable to expet that in average it shouldbehave as n for some onstant . But this means that one should expet zero radius of onvergenefor the series (2.25). This is not too surprising. Even the one-dimensional integralF (g) = Z +1�1 e�x2=2�gx4dx (2.27)is well-de�ned only for g � 0. We annot hope in�nite dimensional funtional integrals of the samekind to behave better than this one dimensional integral. In mathematially preise terms, F isnot analyti near g = 0, but only Borel summable. A Borel summable funtion f an be entirelyreonstruted from its asymptoti series Pn anxn, but not by naively adding the terms in theseries. One has rather to �rst de�ne the Borel seriesB(t) =Xn ann! tn (2.28)and to analytially ontinue this funtion B to a neighborhood of the real axis, then reover fthrough the integral formula f(x) = 1x Z 10 e�t=yB(t)dt: (2.29)In the ase of the funtion F , this proess is guaranteed to onverge (using the obvious analytiityof F for <g > 0, some uniform Taylor remainder estimates and Nevanlinna's theorem [12℄). So weknow the integral (2.29) an reonstrut F from the list of its asymptoti oeÆients, whih inthat partiular ase are nothing butan = (�1)nn! Z +1�1 x4ne�x2=2dx = (�1)n4n!!n! : (2.30)In general Bosoni funtional integrals require some stability ondition for the potential atlarge �eld (here e.g. g � 0), and their perturbation series do not onverge. Borel summability is



8 V. Rivasseau S�eminaire Poinar�etherefore the best we an hope for the �4 theory, and it has indeed been proved for the theory indimensions 2 and 3 [13, 14℄.From translation invariane, we do not expet A�G;� to have a limit as � ! 1 if there arevauum subgraphs in G. But we an remark that an amplitude fatorizes as the produt of theamplitudes of its onneted omponents.With simple ombinatori veri�ation at the level of ontration shemes we an fatorize thesum over all vauum graphs in the expansion of unnormalized Shwinger funtions, hene get forthe normalized funtions a formula analog to (2.25):SN = X�4 graphs G with N(G)=NG without any vauum subgraph (�g)n(G)S(G) AG: (2.31)Now in (2.31) it is possible to pass to the thermodynami limit (in the sense of formal powerseries) beause using the exponential derease of the propagator, eah individual graph has a limitat �xed external arguments. There is of ourse no need to divide by the volume for that beauseeah onneted omponent in (2.31) is tied to at least one external soure, and they provide theneessary breaking of translation invariane.Finally one an determine the perturbative expansions for the onneted Shwinger funtionsand the vertex funtions. As expeted the onneted Shwinger funtions are given by sums overonneted amplitudes: CN = X�4 onneted graphs G with N(G)=N (�g)n(G)S(G) AG (2.32)and the vertex funtions are the sums of the amputated amplitudes for proper graphs, also alledone-partile-irreduible. They are the graphs whih remain onneted even after removal of anygiven internal line. The amputated amplitudes are de�ned in momentum spae by omitting theFourier transform of the propagators of the external lines. It is therefore onvenient to write theseamplitudes in the so-alled momentum representation:�N (z1; :::; zN) = X�4 proper graphs G with N(G)=N (�g)n(G)S(G) ATG(z1; :::; zN); (2.33)ATG(z1; :::; zN ) � 1(2�)dN=2 Z dp1:::dpNeiP piziAG(p1; :::; pN ); (2.34)AG(p1; :::; pN) = Z Yl internal line of G ddplp2l +m2 Yv2G Æ(Xl �v;lpl): (2.35)Remark in (2.35) the Æ funtions whih ensure momentum onservation at eah internal vertexv; the sum inside is over both internal and external momenta; eah internal line is oriented in anarbitrary way and eah external line is oriented towards the inside of the graph. The inidenematrix �(v; l) is 1 if the line l arrives at v, -1 if it starts from v and 0 otherwise. Remark also thatthere is an overall momentum onservation rule Æ(p1 + ::: + pN) hidden in (2.35). The drawbakof the momentum representation lies in the neessity for pratial omputations to eliminate theÆ funtions by a \momentum routing" presription, and there is no anonial hoie for that.2.3 Feynman representationThere are other onvenient representations suh as the \Feynman parametri representation" whihdo not need any non anonial hoies. To de�ne it we write the � or parametri representation ofthe propagator: Ĉ(p) = 1(2�)d Z 10 e��(p2+m2)d�; (2.36)
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A  spanning tree A two-treeA graph Figure 2: Spanning and two-trees
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Figure 3: The graph G0C(x; y) = 1(2�)d Z 10 d� Z eip:(x�y)��(p2+m2)ddp= 1(4�)d=2 Z 10 d��d=2 e��m2�jx�yj2=(4�): (2.37)The x spae or p spae integrations an then be expliitly performed in any Feynman ampli-tude, sine they are quadrati. The result is a ompat formula with one salar integration over aparameter � for eah internal line of the graph:AG(p1; :::; pN) = Æ(Xv Pv) Z 10 Yl d�l e�Pl �lm2�VG(�;p)=UG(�) 1[UG(�)℄d=2 (2.38)where UG and VG are polynomials in � depending on the partiular topology of the graph, alledthe Symanzik polynomials. Their expliit expression is:UG =XS Yl not in S �l; (2.39)VG(p; �) = (XT Yl not in T �l)(Xa2T1 pa)2: (2.40)In (2.39) the sum runs over the spanning trees S of G. Suh a spanning tree is a set of lines withoutloops onneting all the verties of the graph. Similarly in (2.40), the sum runs over the two-trees Tof G whih separate G into two onneted omponents, eah ontaining a non empty set of externallines, one of whih is T1 (by overall momentum onservation, (2.40) does not hange if T1 is replaedby the set of external lines of the other onneted omponent, whih is the omplementary of T1)(see Figure 2 for an example).In this elementary presentation we shall not reprodue the omplete proof of these formulas(see [15℄ or [9℄). They rely on a areful analysis of the quadrati form that one obtains in theexponential after rewriting all the propagators in � spae. This quadrati form in turn an bededued form the inidene matrix of the graph.Remark that the parametri representation is not only \anonial" but also quite eonomialin large dimensions. In dimension 4, a four point subgraph of order n has n � 1 loops hene themomentum integration is over a spae of dimension 4n� 4; instead the parametri representationis over a spae of dimension l = 2(n � 1), hene with only half as many salar omponents to



10 V. Rivasseau S�eminaire Poinar�eintegrate. For instane the integral of the graph G0 of Figure 2 involves only one total externalmomentum q and an be written formally asAG0(q) = Z d4p 1(p2 +m2)((p� q)2 +m2)= Z 10 Z 10 d�1d�2(�1 + �2)2 e�(�1+�2)m2� �1�2�1+�2 q2 : (2.41)However none of these two representations gives onvergent integrals beause of a divergene atlarge p or small �'s. We return to the struture of these ultraviolet divergenes in the next subse-tion. The �-representation has also a fundamental interpretation in terms of Brownian motions[16℄. In partiular, the propagator (2.37) an be written as:C(x; y) = Z 10 d� exp(�m2�)P (x; y;�) (2.42)where P (x; y;�) = (4��)�d=2 exp(�jx� yj2=4�) is the Gaussian probability distribution of a Brow-nian path going from x to y in time �.The Feynman diagrams an then be understood as made of Brownian paths interating byDira distributions, as in the Edwards model for self-avoiding polymers [17℄. This lead P.-G. deGennes in 1972 to his famous relation between this polymer model and a [(�)2℄2 �eld theory withO(N) symmetry, in the N ! 0 limit [18℄. This allowed RG results to be applied to polymer physis.A new development appeared when J. des Cloizeaux introdued a simple diret (dimensional)renormalization method for the Edwards model [19, 20℄, working expliitly in the �-representation.2.4 Ultraviolet DivergenesThe amputated amplitudes for a onneted graph at �nite external momenta are not always �nitebeause of possible ultraviolet divergenes. These divergenes appear beause the momentum in-tegration over the loop variables in (2.35) may not always be absolutely onvergent. This an betraed bak to the distribution harater of the propagator C in diret spae, for d � 2, and thegeneral impossibility to multiply distributions as should be done to de�ne e.g. �4.This diÆulty, also present in quantum eletrodynamis, was the basi puzzle that the found-ing fathers of quantum �eld theory were onfronted with. Let us explore it, inreasing the dimensionstep by step. The naive global saling of all internal momenta of the graph explains our de�nitionof the super�ial degree of divergene: it measures whether the integral over this global salingparameter is onvergent or not. Therefore graphs with !(G) � 0 are alled primitively divergent.- If d = 2, we �nd !(G) = 2 � 2n, so the only divergent graphs have n = 1, and N = 0or N = 2. The only divergene is due to the \tadpole" loop R d2p(p2+m2) whih is logarithmiallydivergent.- If d = 3, we �nd !(G) = 3 � n � N=2, so the only divergent graphs have n � 3, N = 0,or n � 2 and N = 2. Suh a theory with a �nite number of \primitively divergent" subgraphs isalled superrenormalizable.- If d = 4, !(G) = 4 � N . Every two point graph is quadratially divergent and every fourpoint graph is logarithmially divergent. This is in agreement with the super�ial degree of thesegraphs being respetively 2 and 0. For instane the graph G0 at zero momentum without ultravioletuto� is logarithmially divergent for large p:AG0(0) = Z d4p(p2 +m2)2 = +1 (2.43)and the \tadpole" loop R ddpp2+m2 is quadratially divergent. Theories in whih the degree of diver-gene only depends on the number of external legs are alled renormalizable.- Finally for d > 4 we have in�nitely many primitively divergent graphs with arbitrarily largenumber of external legs, and the theory is alled non-renormalizable.
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Figure 4: A 6-point subgraph with a divergent subgraphIt was soon reognized that even graphs whih have negative super�ial degree of divergene,suh as the 6-point subgraph of Figure 4 in d = 4, are not ultraviolet �nite. Indeed they an ontaindivergent subgraphs, and the orresponding subintegrations do not onverge.The �rst progress on renormalization ame in reognizing that for four-dimensional theoriessuh as �4 or quantum eletrodynamis, the super�ially divergent graphs when suitably added toa loal ounterterm gives rise to a �nite ontribution. For instane in the ase of the graph G0 the\renormalized" amplitudeARG0(q) = Z [ 1(p2 +m2)((p+ q)2 +m2) � 1(p2 +m2)2 ℄ d4p= Z 10 Z 10 d�1d�2e�(�1+�2)m2(�1 + �2)2 �e� �1�2�1+�2 q2 � 1�: (2.44)is now �nite.Indeed let us prove �niteness of this amplitude. In the momentum representation, we redueto the same denominator, and taking advantage of parity we obtain:ARG0(q) = Z �2p:q � q2(p2 +m2)2((p+ q)2 +m2) d4p= � Z q2(p2 +m2)2((p+ q)2 +m2) d4p (2.45)now an obviously onvergent integral. In the parametri representation, using je�x � 1j � x forpositive x we an bound ARG0(q) byZ 10 Z 10 d�1d�2e�(�1+�2)m2 q2�1�2(�1 + �2)3 (2.46)whih is now a onvergent integral. To be more preise, we should make additional remarks:- the renormalized amplitude is negative- it behaves as  log jqj as jqj ! 1- this large behavior at large q is solely due to the integral over the region jpj � jqj of theounterterm. Indeed both Zjpj�jqj q2(p2 +m2)2((p+ q)2 +m2) d4p (2.47)and Zjpj�jqj 1(p2 +m2)((p+ q)2 +m2) d4p (2.48)are well de�ned uniformly bounded integrals as jqj ! 1.Remark �nally that the ounterterm, when Fourier transformed, orresponds to a loal �4term, sine the zero momentum value of the graph is nothing but the spatial integral over y ofC2(x; y). This ounterterm when added to the bare Lagrangian will renormalize G0 not only as a
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G/SFigure 5: The redution of a subgraph in a graph
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1  S S 2 S 3GFigure 6: A graph with two overlapping divergent subgraphsprimitive graph, but eah time it appears as a subgraph in the expansion, sine the ombinatoriof inserting a �4 vertex or a G0 subgraph at any plae in a bigger diagram is learly the same.In the same way loal ounterterms of the �4, �2 or (r�)2 type for any kind of primitivelydivergent graph, an be reabsorbed in the parameters of the Lagrangian of (2.8). Suh an in�niterede�nition whih a�ets only the unobservable \bare" parameters of the theory hene it is notphysially inonsistent.But for a while it was not lear whether one ould introdue a proper set of ountertermswhih is loal and remove all the ultraviolet divergenes of every graph, not only the main globalprimitive divergenes but also all the divergenes assoiated to subgraphs. This would make allpartiular submanifolds of the momentum integration onvergent. The solution of this problem,by Bogoliubov, Parasiuk, Hepp and Zimmermann [21, 22, 23℄, and its extension to gauge theoriesby 'tHooft and Veltman [27℄ is a �rst great mathematial triumph of quantum �eld theory.2.5 The Bogoliubov Reursion and Zimmermann's SolutionWe have now to explain how to organize the set of all subtrations that should be performed in arenormalizable theory to make it ultraviolet �nite in perturbation theory. When a loal ountertermhas been de�ned for a graph G1 with N1 external lines, the modi�ed Lagrangian gives rise to anew vertex with N1 lines. So for every graph G2 whih ontains G1 as a subgraph, to subtrat thesubintegration over G1 orresponds to perform the sumAG1 + G1AG2=G1 (2.49)where G2=G1 is the graph obtained by reduing G1 to a single vertex in G2 (see Figure 5 for anexample). This redution is an essential operation in renormalization theory. But remark alreadythat if there are several divergent subgraphs in a graph G, we an de�ne a redued subgraph G=Sonly for families S of disjoint subgraphs S.More generally, if G2 itself is divergent, it seems lear that the ounterterm for G2 shouldbe de�ned by taking the loal part of (2.49), not of AG1 itself. So the de�nition of ountertermsis indutive, starting with the smaller graphs towards the bigger. This is after all the logi ofperturbation theory. This indution was formalized by Bogoliubov. However sine a graph G anontain overlapping divergent subgraphs S1 and S2 with non-trivial intersetion S3, suh as inFigure 6, it is far from lear that this indution atually removes all ultraviolet divergenes. The�rst proof that Bogoliubov's indution atually leads to �nite amplitudes is due to Hepp [22℄,and the �rst expliit solution of the indution, whih involves the notion of \forests" is due toZimmermann [23℄.Suppose we have de�ned ounterterms up to a given order n. Then for a graph G at order



Vol. 2, 2001 An Introdution to Renormalization 13n+ 1 one de�nes a ounterterm G and the renormalized amplitude ARG byARG =XS (AG=S YS2S S) + G (2.50)where the sum is over all families S of disjoint primitively divergent subgraphs of G, inluding theempty one.The exat de�nition of G ontains some arbitrariness if the goal is to make renormalized am-plitudes �nite. In the BPHZ (Bogoliubov-Parasiuk-Hepp-Zimmermann) renormalization sheme,G is the loal (or zero momentum part) of the sum in (2.50). More preisely, if we hoose a systemof loop momenta k for G and all p the external momenta we haveAG(p) = Z dkIG(p; k) (2.51)and for a primitively divergent graph one de�nes the ounterterm G by a subtration atingdiretly at the level of the integrand IG(p; k) in momentum spae, to getARG(p) = Z dk(1� T d(G))IG(p; k) (2.52)where T d(G), the so-alled Taylor \operator" selets the beginning of the Taylor expansion ofIG(p; k) up to order d(G) around the simple point p = 0. This is in agreement with (2.44).To generalize to graphs with divergent subgraphs one follows the Bogoliubov reursion. Infat renormalizing proper (i.e. onneted one-partile-irreduible) subgraphs is enough, and theexpliit solution of the Bogoliubov indution with this subtration presription is:ARG = Z dkRIG(p; k) (2.53)R =XF YS2F(�T d(S)) (2.54)where the sum is over all forests of proper divergent subgraphs S � G, inluding the empty forest.De�nition 1 A forest F is a subset of subgraphs suh that for any pair S1, S2 of the forest, eitherS1 � S2 or S2 � S1 or S1 and S2 are disjoint.This de�nition ensures that the partial ordering by inlusion in a forest an indeed be pitured asa set of trees, hene the name \forest".For example the graph G of Figure 5 whih has 3 di�erent divergent strit subgraphs, has 12forests, namelyf;g; fS1g; fS2g; fS3g; fGg; fS3; S1g; fS3; S2g; fS3; Gg; fS1; Gg; fS2; Gg; fS3; S1; Gg; fS3; S2; Gg(2.55)These 12 forests are shown in Figure 7 In formula (2.54) the produt of the Taylor operators istaken following the partial ordering of the forest, that is from smaller to bigger graphs. Eah Tayloroperator selets the beginning of a Taylor expansion in the external momenta of a subgraph S,whih an later beome internal momenta for G. The de�nition of R may therefore depend on thehoie of the momentum routing, hene of the loop momenta solving the Æ funtions in (2.35). ThisdiÆulty lead Zimmermann to de�ne partiular momentum routing alled \admissible". For thesehoies, Zimmermann ould then prove:Theorem 2.1 The integrals (2.53) do onverge for any G and de�ne amplitudes ARG(p) whih aretempered distributions when analytially ontinued to Minkowski spae.The diÆulty linked to momentum routing an be avoided ompletely by working instead inthe parametri representation. It is indeed possible to de�ne an R operator ating diretly in the�-parametri spae, equivalent to Zimmermann's operator, but bypassing ompletely the problem
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Figure 7: The twelve forests of Gof admissible momentum routing [24, 25℄. Then there exists a very expliit proof of �niteness ofthe renormalized amplitudes. One an divide, for any omplete ordering of the parameters �l, alsoalled a \Hepp setor", the sum over all forests quite naturally into pakets, so that eah paketgives a �nite ontribution. The problem is that the pakets themselves hange when the Heppsetor hanges! Nevertheless this method is then suÆiently expliit to not only prove �nitenessbut also to produe reasonable quantitative estimates of the size of renormalized perturbationtheory at large order [26℄.The de�nition of the pakets is subtle, but let us try to sketh it. The number of forests inany paket is always a ertain power of 2, that is is of the form 2r for a ertain integer r. Indeed theforests whih ompose any suh paket are exatly those ontaining a �xed forest F0 and ontainedin another �xed forest F0 [ F1. r is simply the number of elements in F1. So the forests in thatpaket are those F that satisfy F0 � F � F0 [ F1. Hene the sum of the Taylor subtrations fora given paket always reonstruts an operatorYS2F0(�TS) YS2F1(1� TS): (2.56)In a given setor, there is exatly one paket for eah forest F0 with a ertain property, whihroughly speaking says that F0 is made of subgraphs with some internal line �-parameter largerthan some external line �-parameter in the ordering of the setor onsidered. Given suh an F0,the forest F1 then is ompletely determined by F0 and the setor. It is made of the subgraphs withthe opposite property, that is all �-parameters for the internal lines of these subgraphs of F1 aresmaller than all �-parameters for their external lines in the ordering of the setor 3.The fatorization property (2.56) is what makes eah paket �nite. Indeed the de�ning prop-erty for the subgraphs of F0 means that they are not really divergent in the setor onsidered.This is beause the smaller �-parameter for one of their external lines ats as a natural ultravioletuto� for the subgraph. In ontrast the subgraphs of F1 are potentially divergent. But for thesesubgraphs the 1� TS operators in (2.56) preisely provide the neessary subtrations! This is thebasi mehanism whih makes every paket �nite.3The true de�nition is a bit more ompliated and indutive, beause redution by the elements of F0 (as shownin Figure 5) has to be teken into aount, starting from the smallest subgraphs in F0 and working towards thelargest.



Vol. 2, 2001 An Introdution to Renormalization 152.6 Di�erent renormalization shemesTo subtrat the value of subgraphs at zero external momenta is obviously a natural but not aanonial hoie. It may be even ill-de�ned if the theory ontains massless partiles, whih is forinstane the ase of quantum eletrodynamis. It is important therefore to have several di�erent setsof renormalization shemes, and to understand how they are related to eah other. Two di�erentsubsets of ounterterms whih both make the Feynman amplitudes �nite must di�er through �niteounterterms. In pratie one wants usually to �x some physial onditions suh as the partiularvalues of some Green funtions at some given momenta, and to determine the renormalizationsheme orresponding these onditions. It may require two steps: �rst to use a general shemeto get rid of in�nities, then to adjust the sheme through �nite ounterterms so as to meet thephysial onditions.For instane the BPHZ sheme that we have onsidered for the massive Eulidean �44 theoryorresponds to the following normalization onditions on the onneted funtions in momentumspae: C4(0; 0; 0; 0) = �g; (2.57)C2(p2 = 0) = 1m2 ; (2.58)ddp2C2jp2=0 = � am4 : (2.59)Let us say a few words about another popular renormalization sheme, namely dimensionalrenormalization. The starting idea is that in the parametri representation (2.38) the dimension dan be onsidered as a omplex parameter. The attentive reader an objet that external momentastill live in R4 . But sine the amplitudes depend only on the Eulidean salar invariants (Pa2T1 pa)2built on them (see (2.40)), this is not a major diÆulty. Amplitudes suh as IG0 in (2.41) beomemeromorphi funtions for <d � 4. They have then a pole at d = 4. It is therefore natural tode�ne the �nite part of the amplitude as the �nite part of the orresponding Laurent series, heneto simply extrat the pure pole with its orret residue at d = 4. When properly implementedaording to Bogoliubov's indution this leads to the notion of dimensional renormalization.This sheme has many advantages but one major drawbak. The advantage is that it preservesthe symmetries of the theory suh as gauge symmetries. Using it, `t Hooft and Veltman were able toshow the renormalizability of the non-Abelian gauge theories at the ore of the standard model [27℄.For instane although the ation g�2F��F�� of a pure non-Abelian gauge theory ontains termsof order 2, 3 and 4 in the �eld A�, it is possible with dimensional renormalization to preserve thebasi relation between these three terms whih make the total Lagrangian a perfet square. In thisway the theory remains of the same form after renormalization , but simply with a renormalizedparameter gren instead of g. This suess was extremely important to onvine physiists to adoptnon-Abelian gauge theories for partile physis. As other examples of use of this sheme, let usmention again the renormalization method for the Edwards model of polymers [19, 20℄ whihhas been shown to be equivalent to standard (dimensional) �eld-theoreti renormalization [28℄.These works opened the way to the renormalization theory of interating or self-avoiding rumpledmembranes, where the Feynman diagrams are no longer made of lines but of extended surfaes (see,e.g., [29℄). Dimensional renormalization is also at the ore of the Riemman-Hilbert interpretationof renormalization [30℄.But the big drawbak of dimensional renormalization is that up to now it remains a purelyperturbative tehnique. Nobody knows how to interpolate orretly in the spae-time dimensiond the in�nite dimensional funtional integrals (2.17) whih are the basis for the non-perturbativeor onstrutive version of quantum �eld theory. To solve this diÆulty would ertainly be a majorprogress.2.7 What lies beyond perturbative renormalization?The theory of perturbative renormalization is a brilliant piee of mathematial physis. The solu-tion of the diÆult \overlapping" divergene problem through Bogoliubov's reursion and Zimmer-mann's forests beomes partiularly lear in the parametri representation using Hepp's setors:
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�Figure 8: A family of graphs Pn produing a renormalon
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�Figure 9: A family of onvergent graphs Qn, that do not produe any renormalonin eah setor there is a di�erent lassi�ation of forests into pakets so that eah paket gives a�nite integral.Dimensional renormalization allows to preserve ritial symmetries suh as gauge symmetries,hene to prove renormalizability of four dimensional gauge theories, but does not seem adaptedto non-perturbative theory. Note however that in this sheme the �nite part of the Feynmanamplitudes are related to � funtions. This hints that this theory might be useful for mathematis,partiularly number theory. The struture of the forests subtration has been shown reently to beassoiated to a Hopf algebra and related to the Riemann-Hilbert problem in the works of Connesand Kreimer [31, 30℄.But from the physial point of view we annot oneal the fat that purely perturbativerenormalization theory is also in some sense a oneptual maze. At least two fats already hint ata better theory whih lies behind:- The forest formula seems unneessarily ompliated, with too many terms. For instane ifwe examine losely the lassi�ation of forests into pakets, we remark that in any given Heppsetor, only the partiular paket orresponding to F0 = ; seems absolutely neessary to make therenormalized amplitude �nite. The other pakets, with non-empty F0 seem useless, a little bit like\junk DNA": they are there just beause they are neessary for other setors. This does not lookoptimal.- The theory makes amplitudes �nite, but at whih ost! The size of some of these renormalizedamplitudes beomes indeed unreasonably large as a size of the graph inreases. This phenomenon isalled the \renormalon problem". For instane it is easy to hek that the renormalized amplitude(at 0 external momenta) of the graphs Pn with 6 external legs and n+2 internal verties in Figure8 beomes large as nn! as n ! 1. Indeed we remarked already that at large q the renormalizedamplitude ARG0 in (2.44) grows like log jqj. Therefore the hain of n suh graphs in Figure 8 behavesas [log jqj℄n, and the total amplitude of Pn behaves asZ [log jqj℄n d4q[q2 +m2℄3 'n!1 nn! (2.60)So there are not only too many Feynman graphs to resum them, but some of them after renor-malization also aquire so large values that the orresponding subfamilies of graphs annot beresummed! These two hints are in fat linked. As their name indiates, renormalons are due torenormalization. Families of ompletely onvergent graphs suh as the graphs Qn of Figure 9, arebounded by n, and produe no renormalons. But studying more arefully renormalization in the� parametri representation one an say more. One an hek that renormalons are solely due tothe forests pakets with F0 6= ; and in fat F0 large. A paket assoiated to a given F0 typiallygrows like njF0j! [26℄. Reall that the forests F0 are made of those subgraphs whih are not reallydivergent in the setor onsidered. So this renormalon analysis generalizes one of our previousremarks. Renormalons are due to subtrations that are not neessary to ensure onvergene, justlike the strange log jqj growth of ARG0 at large q is solely due to the ounterterm in the region where



Vol. 2, 2001 An Introdution to Renormalization 17this ounterterm is not neessary to make the amplitude �nite.We an therefore onlude that subtrations are not organized in an optimal way by theBogoliubov reursion. The idea of renormalization itself is not wrong. But to use the size of thegraph as the relevant parameter to organize Bogoliubov's indution is not the optimal idea. Abetter parameter to organize the indution was found in fat for other ompletely di�erent reasonsby Wilson and followers. It is not the size of the graph but rather the size of the line momentain it that should be used to better organize the renormalization subtrations. This is the point ofview of the renormalization group.3 The Renormalization GroupThe renormalization group is a strange name. It is in fat an (ill-de�ned) semi-group. Its disoveryame in two steps: �rst by thinking about hanging the renormalization sheme, �eld theorists suhas Callan and Symanzik disovered a kind of \invariane" of the theory [32, 33℄. Two renormalizabletheories with two di�erent sets of oupling onstants but de�ned by subtrating at di�erent salesan in fat be the same physial theory if the onstants and sales are related through some\renormalization group" equations. It is in fat even possible to prove �niteness of perturbativerenormalization, hene to bypass the BPHZ theorem by diretly using these renormalization groupequations [34℄.Then ame the oneptual breakthrough of Wilson and followers [35℄: instead of renormalizingthe theory at one, why not perform this diÆult task in a sequene of steps? The evolution of thetheory in this sequene of steps is then similar to the evolution of a dynamial system. In dynamialsystems we know that it is usually easier (in partiular numerially) to perform patiently a largesequene of loal steps than to try to guess the global result, or to searh for an analyti solution,whih is very rare. The same is true in renormalization theory, in whih some sale parameter playsthe role of time.Although this was not the histori path, it would have been perfetly possible to arrive alsoat the same renormalization group onept by simply trying to simplify Zimmermann's formula toget rid of renormalons. Indeed this is exatly what the RG also does!This note is too short for a omplete review of the renormalization group and in partiularof its non-perturbative aspets. So we will sketh what it does on the simple example of �44.3.1 SliingOne needs �rst to separate the degrees of freedom of the theory, and to organize them into asequene of slies, eah slie orresponding to a given sale. It is onvenient to hoose this sequeneof sales to form a geometri progression. The idea is then to perform the funtional integralonly over the modes of the �eld orresponding to momenta of a given sale and to ompute ane�etive theory for the remaining sales. This should not be done in an arbitrary order: aordingto the usual sienti� philosophy, mirosopi laws should determine marosopi behavior, not theonverse 4. So the \e�etive" �eld theory should emerge progressively from the bare theory like ane�etive piture progressively emerges from averaging the �ne pixels in a detailed piture, or likethermodynamis with a few marosopi parameters suh as temperature or pressure should emergefrom a very ompliated and haoti mirosopi behavior governed by the laws of mehanis.In a theory suh as �44, the mass �xes some partiular sale beyond whih no interesting physishappens beause onneted funtions deay exponentially just as the propagator itself (2.13). Soin this ase the renormalization group will be used solely to treat the ultraviolet problem. One anslie the theory by dividing the Eulidean propagator into slies with an index i 2 N, and the sliei will orrespond to momenta of order roughly M i, where M is a �xed number, the ratio of thegeometri progression (e.g. M = 2).4This traditional philosophy is put in question by more holisti points of view suh as those based on thedualities of string theory whih exhange small and large distanes. But in this note I will nevertheless stik to theold-fashioned point of view!



18 V. Rivasseau S�eminaire Poinar�eThis an be done onveniently with the parametri representation, sine � in this represen-tation is roughly like 1=p2. So we an de�ne the propagator within a slie asCi = Z M�2(i�1)M�2i e�m2�� jx�yj24� d��d=2 : (3.1)We an intuitively imagine Ci as the piee of the �eld osillating with Fourier omponents essentiallyonly of size roughly M i. In fat it is easy to prove the bound (for d > 2)jCi(x; y)j � K:M (d�2)ie�Mijx�yj (3.2)where K is some onstant.For the �rst slie the formula is a little di�erent beauseC0 = Z 11 e�m2�� jx�yj24� d��d=2 : (3.3)Now the full propagator with ultraviolet uto� M�, � being a large integer, may be viewedas a sum of slies: C�� = �Xi=0 Ci (3.4)Then the basi renormalization group step is made of two main operations:� A funtional integration� The omputation of a logarithm to de�ne an e�etive ationIndeed deomposing a ovariane in a Gaussian proess orresponds to a deomposition ofthe �eld into independent random variables �i. Let us all�i = iXj=0 �j : (3.5)This is the \low-momentum" �eld for all frequenies lower than i. The RG idea is that startingfrom sale � and performing � � i steps, one arrives at an e�etive ation for the remaining �eld�i. Then writing �i = �i + �i�1 splits the �eld into a \utuation" �eld �i and a \bakground"�eld �i�1. The �rst step, funtional integration, is performed solely on the utuation �eld, so itomputes Zi�1(�i�1) = Z d�Ci(�i)e�Si(�i+�i�1): (3.6)Then the seond step rewrites this quantity as the exponential of an e�etive ation, hene simplyomputes Si�1(�i�1) = � log[Zi�1(�i�1)℄ (3.7)Now Zi�1 = e�Si�1 and one an iterate! The ow from the initial bare ation S = S� for the full�eld to an e�etive renormalized ation S0 for the last \slowly varying" omponent �0 of the �eldis similar to the ow of a dynamial system. Its evolution is deomposed into a sequene of disretesteps from Si to Si�1.Of ourse this program needs many modi�ations to beome a mathematially orret (non-perturbative) presription. But at least formally it has a non-perturbative potential beause it isnot formulated at the level of graphs. Integrating over a single \momentum slie" of the �eld islike omputing a �eld theory with both ultraviolet and infrared uto�, and should be muh easierthan a full-edged ultraviolet or infrared problem.A key feature of the standard presentation of the renormalization group has been also omitted.Usually one performs a third somewhat onfusing operation in a RG step, whih is a resaling ofall the lengths of the theory and of the �eld size. Here it would simply bex!M�1x; (3.8)



Vol. 2, 2001 An Introdution to Renormalization 19�!M�(d�2)=2�: (3.9)But this resaling is made to ompare more easily the e�etive ation to the former one, just like a\reframing" of our averaged piture to always �t into a frame of �xed size. It is therefore some kindof analogue of hanging the referene frame in a dynamial system, from the \laboratory frame"to a \moving frame". We prefer here not to introdue this resaling, beause in many situationsthe long distane behavior of a theory is not governed by a simple saling around the point p = 0in momentum spae but by more ompliated extended singularities. This phenomenon ours inondensed matter, where the singularity is given by a so alled Fermi surfae, and in di�usionproblems in Minkowski spae, where the propagator is singular on a mass-shell. In these asesthere is no single simple moving frame (but rather one di�erent moving frame for eah limit pointof the extended singularity).Of ourse there is lot of arbitrariness in the hoie of the sliing for the RG. One an usefor instane wavelets [36℄. A very popular hoie is \blok-spinning", in whih �i�1 is simply theaverage of �i over a ube of side size M�i. Again this is a hoie whih does not generalize easilyto extended singularities (and also breaks the rotation invariane of the theory) so (when possible)sliing the ovariane of the �eld seems the best tehnial tool.It is lear that the RG strategy is not limited to the study of an ultraviolet problem in �eldtheory. In fat sine the renormalization group ows from ultraviolet sales to infrared ones, it ispartiularly well adapted to the study of ritial phenomena in statistial mehanis [35, 5℄. Thebare ritial ation leading to an e�etive massless ation orresponds to an initial point at some�nite given spatial sale in a RG trajetory, for whih a �nal ondition (massless e�etive theory)is given at very long distane. Similarly \the ultraviolet limit" in �eld theory orresponds to asequene of bare ations at smaller and smaller spatial sale whih end up on the same renormalizedtheory at some given �xed spatial sale. So the two problems are very similar. Finally a massless �eldtheory without ultraviolet uto� is similar to a dynamial system with two boundary onditionsone towards t! �1 and one towards t! +1.3.2 The FlowIn this setion we would like to sketh how the renormalization group deeply hanges the wayperturbation theory should be organized.Naive �eld theory was formulated with a single set of oupling onstants, and perturbativelyrenormalized �eld theory is formulated with two suh sets, the bare and the renormalized onstants.The bare ouplings beome in�nite formal power series in the renormalized onstants with oef-�ients whih diverge when the ultraviolet uto� is removed. But the orrelation funtions whenexpressed as power series in the renormalized oupling onstant have perfetly �nite ultravioletlimits order by order. This limit is the sum of the renormalized Feynman amplitudes given by theforest formulas. But in addition to the usual divergene of perturbation theory due to the largenumber of diagrams this perturbative renormalization theory su�ers from a new non-perturbativedisease, the renormalons generated by the anomalously large amplitudes of some families of graphssuh as those of Figure 8.How does this hange with RG? RG tells us that we should neither use one nor two setsof oupling onstants, but an in�nite set, one for eah sale. All these \running onstants" areuniquely related to any one of them beause they must lie on a single RG trajetory.Clearly the RG philosophy means that we should neither ompute the orrelation funtions asseries in the bare oupling with diverging oeÆients in the ultraviolet limit nor as renormalon-illseries in the renormalized oupling. We should ompute them as multi-series in the in�nite set ofrunning onstants.One this big hange is aepted, everything falls into plae.The momentum sliing beomes the fundamental tool. The Feynman amplitudes are sliedinto \assignments" � = filg with a slie index il for eah line. There is also a vertex index iv foreah vertex, namely the highest line index owing into that vertex. It is a natural onvention toonsider the true external lines of the graph as having index below all others, for instane here index�1. Then the amplitude for a graph is no longer proportional to the power of a single oupling



20 V. Rivasseau S�eminaire Poinar�ebut eah vertex should be equipped with a running onstant giv orresponding to its sale in theassignment.In this way we obtain the \e�etive expansion" for a given Shwinger funtionSN = X�4 graphs G with N(G)=NG without any vauum subgraph X�=filg 1S(G) �Yv2G giv�AR;effG;� ; (3.10)where the e�etively renormalized amplitude AR;effG;� ontains only one subtration paket, the oneassoiated to F0 = ;. More preisely the graph G and the assignment � uniquely de�ne a single\divergent forest" F(G;�) whih is made of those divergent subgraphs in G for whih the indies ofinternal lines are all greater than the indies of external lines. Then (for instane in the parametrirepresentation) AR;effG;� = Z d� � YS2F(G;�)(1� TS) � IG�(�): (3.11)The Shwinger funtions in this \e�etive expansion" are made of ourse of exatly the samepiees as the bare or the renormalized expansion. These piees are simply reshu�ed in a di�er-ent way. Indeed in the e�etive expansion the subtrations assoiated to the additional paketsresponsible for all the ompliations of Zimmermann's formula have simply disappeared, exatlyreabsorbed into the e�etive onstants that equip the verties. Sine these pakets were responsiblefor the renormalons, it is not surprising that the expansion (3.10) is free of the renormalon problem,as expressed by our next Lemma.Remark that the subgraphs in F(G;�) are indeed exatly those divergent subgraphs whihhave short spatial sale ompared to their external lines. Distanes between internal verties arethen shorter than the typial osillation lengths of the external legs. Sine these legs are likesensors through whih the subgraph ommuniates with the external world, subgraphs in F(G;�)look \quasi-point-like" when seen from the outside. It is therefore no surprise that subtrating atruly loal ounterterm for eah suh \quasi-loal" subgraph, whih is what (1� TS) does, leavesonly a small remainder free of renormalons. More preisely one an prove (putting all externalmomenta to 0 to simplify):Lemma 3.1 There exists a onstant K suh that for any GX� jAR;effG;� j � Kn(G) (3.12)One an onlude that although in the bare series the amplitudes were not subtrated at all,in the renormalized series they were subtrated too muh beause lots of useless forests gave rise torenormalons. By abandoning the idea of a single oupling onstant, the e�etive expansion whihlies between the bare and renormalized ones has exatly the right amount of subtrations, reatingonly small ontributions.Of ourse the attentive reader may objet that the lemma has not too muh meaning, beauseeah piee AR;effG;� should be multiplied by a di�erent fator Qv2G giv before being summed over �in the e�etive expansion. But let us suppose that all the running onstants gi remain bounded.In this ase it is lear that the e�etive expansion is muh better than the renormalized one fromthe point of view of resummation, sine only the usual divergene linked to the large number ofgraphs remains. And bounded running onstants are not unommon: they our in asymptotiallyfree theories.3.3 Asymptoti FreedomIn a just renormalizable theory like �44 the most interesting ow under the renormalization groupis the one of the oupling onstant. By a simple seond order omputation this ow is intimately



Vol. 2, 2001 An Introdution to Renormalization 21linked to the sign of the graph G0 of Figure 3. More preisely, we �nd that at seond order therelation between gi and gi�1 is gi�1 ' gi � �g2i (3.13)(remember the minus sign in the exponential of the ation), where � is a onstant, namely theasymptoti value of Pj;j0= inf(j;j0)=i R d4yCj(x; y)Cj0 (x; y) when i ! 1. Clearly this onstant ispositive. So for the normal stable �44 theory, the relation (3.13) inverts intogi ' gi�1 + �g2i�1; (3.14)so that �xing the renormalized oupling seems to lead to a large, diverging bare oupling, inom-patible with perturbation theory. This is the famous \Landau ghost" problem.But in non-Abelian gauge theories an extra minus sign is reated by the algebra of the Liebrakets. This surprising disovery has deep onsequenes. The ow relation beomes approxi-mately gi ' gi�1 � �gigi�1; (3.15)with � > 0, or, dividing by gigi�1, 1=gi ' 1=gi�1 + �; (3.16)with solution gi ' g01+g0�i . A more preise omputation to third order in fat leads togi ' g01 + g0(�i+  log i+O(1)) : (3.17)Suh a theory is alled asymptotially free (in the ultraviolet limit) beause the e�etive ouplingtends to 0 with the uto� for a �nite �xed small renormalized oupling. Physially the interation isturned o� at small distanes. This theory is in agreement with sattering experiments whih see aolletion of almost free partiles (quarks and gluons) inside the hadrons at very high energy. Thiswas the main initial argument to adopt quantum hromodynamis, a non-Abelian gauge theorywith SU(3) gauge group, as the theory of strong interations.Remark that in suh asymptotially free theories the ow and all running onstants remainbounded (in fat by the renormalized oupling). The initial expetations that in�nite Feynmandiagrams should lead to in�nite bare parameters are learly wrong in this ase sine this bareparameter in fat tends to 0 with the ultraviolet uto�!Asymptoti freedom is not limited to the rather ompliated non-Abelian gauge theories. Asis well known, fermion diagrams have an extra minus sign per loop. The Gross-Neveu theory, atheory with quarti oupling and N speies of Fermions in two dimensions, has the same powerounting as �44, and is also asymptotially free in the ultraviolet limit. This is also the ase forinstane for the �44 theory with \wrong sign" of the oupling onstant, whih an be studied atleast in the planar limit, whih tames the natural instability due to that wrong sign. The \rightsign" �44 is not asymptotially free in the ultraviolet but as a onsequene it is asymptotially freein the infrared, whih means that the orresponding massless ritial theory (with �xed ultravioletuto�) is almost Gaussian in the long distane limit [35℄.3.4 Some Comments on Construtive RenormalizationConstrutive �eld theory has for ambitious goal to de�ne the non-perturbative mathematially or-ret version of Lagrangian quantum �eld theory. This may be onsidered somewhat an aademiproblem for weakly oupled theories suh as quantum eletrodynamis, for whih perturbativeomputations up to three loops seem suÆient. But there are strongly oupled theories suh asquantum hromodynamis in whih a non-perturbative approah is badly needed. Also it would bequite surprising if the patient analysis of the mathematial diÆulties related to the summation ofquantum perturbation theory did not lead to important new physial insights. After all the diÆul-ties in resumming lassial perturbation theory were very important for the modern understandingof dynamial systems [8℄.



22 V. Rivasseau S�eminaire Poinar�eFor reviews of onstrutive theory we refer to [2, 9, 37, 38℄. But here let us sketh how the RGhas to be modi�ed to beome truly a non-perturbative tool, and review briey the ahievementsof the theory.The �rst diÆulty if we try to resum perturbation theory has to do with the large number ofFeynman graphs. Convergene of the funtional integral itself, and the divergene of perturbationtheory an be onsidered as \large �eld" problems, beause they are related to the fat that abosoni �eld is an unbounded variable. Physially a large �eld orresponds to a large number ofexitations or partiles being produed, and large �eld problems are generi in bosoni theoriesbeause bosons, in ontrast with fermions, an pile up in large numbers at the same plae. InFermioni theories the Pauli priniple physially solves that problem: fermions annot pile up atthe same plae. Mathematially the orresponding antiommuting funtional integrals give rise todeterminants. By Gram or Hadamard's inequalities an n by n determinant with elements boundedby 1 an never be of size n! but at most nn=2, so that fermioni perturbation theory onverges, insharp ontrast with bosoni perturbation theory.Clearly the RG as initially formulated by Wilson or summarized in (3.6)-(3.7) is not math-ematially well-de�ned. In partiular starting form any polynomial ation it reates an e�etiveation whih is obviously no longer polynomial, and this even after a single step! Therefore thelarge �eld problem (integration on � at large �), appears! More preisely, even if the initial bareation is stable, i.e., bounded below, it is not lear that this remains true for Seff (�), even after asingle RG step. Hene starting from a stable interation, the seond step of the RG may be alreadyill-de�ned. This point has to be stressed to physiists!So onstrutive theory must modify arefully the two main operations in a RG step to makethem well de�ned. The funtional integral in a slie must be treated (in the bosoni ase at least)with a tool alled a luster expansion. The idea of the luster expansion is that sine perturbationtheory diverges we must keep most of it in the form of funtional integrals. However one an testwhether distant regions of spae are joined or not by propagators. So one introdues a lattieof ubes of size omparable to the deay rate of the propagator (here M�i) and one performsa battery of tests to know whether there are verties or soures in di�erent ubes joined by apropagator. This allows to rewrite the theory as a \polymer gas", the polymers being the sets ofubes joined together as the outome of the luster expansion. By onstrution this polymer gashas hardore interations: two onneted omponents are always made of disjoint ubes. But whenthe oupling onstant is small, the ativities for the non-trivial polymers (ontaining more thanone ube) are small. Hene the polymer gas is dilute and the statistial mehanis tehnique of theMayer expansion, a tool whih ompares the hardore gas to a perfet gas, allows to perform thethermodynami limit. This Mayer expansion is the non-perturbative analog of the omputation ofthe logarithm in the seond part of a renormalization group step. In this way the renormalizationgroup an be formulated orretly at the non-perturbative level, as a sequene of intertwinnedluster and Mayer expansions, and the ow of the ritial parameters to renormalize, suh as themass, wave funtion and oupling onstant an be omputed in this framework.Using this approah, models of non-trivial interating �eld theories have been built over thepast thirty years, whih satisfy Osterwalder-Shrader's axioms, hene in turn have a ontinuationto Minkowski spae that satis�es Wightman axioms [39, 40℄. Suh models are unfortunately yetrestrited to spae-time dimensions 2 or 3 but they inlude now both superrenormalizable models,suh as P (�)2 [42, 41, 43℄, �43 [44, 45, 46, 14℄ or the Yukawa model in 2 and 3 dimensions, as wellas just renormalizable models suh as the massive Gross-Neveu model in two dimensions [47, 48℄.Most of these models have been built in the weak oupling regime, using expansions suh as theluster and Mayer expansions; the harder models require multisale versions of these expansions,reshu�ed aording to the renormalization group philosophy.In most ases the relationship of the non-perturbative onstrution to the perturbative one hasbeen eluidated: the non-perturbative Green's funtions being the Borel sum of the orrespond-ing perturbative expansion [13, 14, 48℄. In this sense one an say that onstrutive �eld theoryhas ahieved the goal of resumming all Feynman graphs, although, as explained above, Borel re-summation is not a naive ordinary summation but a lever reshu�ing of the initial perturbativeseries.



Vol. 2, 2001 An Introdution to Renormalization 23Unfortunately onstruting �44 itself, the initial goal of the onstrutive program has not beenpossible sine it laks ultraviolet asymptoti freedom. It has been possible to show numeriallyand through orrelation inequalities that starting from a bare lattie ation at short distane withsome reasonable assumptions at short distane, the resulting theory is trivial i.e. not interating[49, 50, 51℄.But important partial results have been obtained for the onstrution of non-Abelian theoriesin 4 dimensions [52, 53℄. New models not perturbatively renormalizable but asymptotially safe arealso within reah of these tehniques, suh as the Gross-Neveu model in three dimensions [54℄. In theinfrared regime bosoni models of renormalizable power ounting suh as the ritial (massless)�44 with an infrared uto� [55, 56℄, or 4 dimensional weakly self-avoiding polymers have beenontrolled [57℄, and their asymptotis at large distane have been established. Nonperturbativemass generation has been established in the Gross-Neveu model in two dimensions and in thenonlinear � model at large number of omponents with ultraviolet uto� [58, 59℄. Finally the RGwhen applied to ondensed matter give rise to many rigorous results and programs, as skethed inthe next setion. Altogether this set of results strongly illustrate the power of funtional integrationin quantum �eld theory.3.5 Extended singularities, the new RG frontierDuring the last deade one of the main ahievements in renormalization theory is the extensionof the renormalization group of Wilson (whih analyzes long-range behavior governed by simplesaling around the point singularity p = 0 in momentum spae) to more general extended sin-gularities [60, 61, 62℄. This very natural and general idea is suseptible of many appliations invarious domains, inluding ondensed matter and �eld theory in Minkowski spae. In this se-tion we will disuss the situation for interating Fermions models suh as those desribing theondution eletrons in a metal.The key features whih di�erentiate eletrons in ondensed matter from Eulidean �eld theory,and makes the subjet in a way mathematially riher, is that spae-time rotation invariane isbroken, and that partile density is �nite. This �nite density of partiles reates the Fermi sea:partiles �ll states up to an energy level alled the Fermi surfae.The �eld theory formalism is the best tool to isolate fundamental issues suh as the existeneof non-perturbative e�ets). In this formalism the usual Hamiltonian point of view with operatorsreating eletrons or holes is replaed by antiommuting Fermion �elds with two spin indies, andpropagator Cab(k) = Æab 1ik0 � [�(~k)� �℄ (3.18)where a; b 2 f1; 2g are the spin indies. The momentum vetor ~k has d spatial dimensions. and �(~k)is the energy for a single eletron of momentum ~k. The parameter � orresponds to the hemialpotential. The (spatial) Fermi surfae is the manifold �(~k) = � 5.For a jellium isotropi model the energy funtion is invariant under spatial rotations�(~k) = ~k22m (3.19)where m is some e�etive or \dressed" eletron mass. In this ase the Fermi surfae is simply asphere. This jellium isotropi model is realisti in the limit of weak eletron densities, where theFermi surfae beomes approximately spherial. In general a propagator with a more ompliatedenergy funtion e(~k) has to be onsidered. A very interesting ase is the two dimensional Hubbardmodel orresponding to a square lattie. The momenta live on the dual \Brillouin zone" [��; �℄2,and the energy funtion is �(~k) = os k1 + os k2 (3.20)so that for � = 0 (the so-alled half-�lled model), the Fermi surfae is a square.5It may be onvenient to add also an ultraviolet ut-o� to this propagator to make its Fourier transformed kernelin position spae well de�ned. Anyway, very high momenta should be suppressed in this non relativisti theory.



24 V. Rivasseau S�eminaire Poinar�eImaginary (Eulidean) time (in the form of a irle, with antiperiodi boundary onditions forFermions) orresponds to �nite temperature T . When T tends to 0; the imaginary time irle growsto R. At �nite temperature, sine Fermioni �elds have to satisfy antiperiodi boundary onditions,the omponent k0 in (3.18) an take only disrete values (alled the Matsubara frequenies) :k0 = �2n+ 1�~ � (3.21)so the integral over k0 is really a disrete sum over n. For any n we have k0 6= 0, so that thedenominator in C(k) an never be 0. This is why the temperature provides a natural infraredut-o�. But when T ! 0, k0 beomes a ontinuous variable and the propagator diverges on the\spae-time" Fermi surfae, de�ned by k0 = 0 and �(~k) = �.The interation term is de�ned by:S� = g2 Z� d3x (Xa �  )2(x) : (3.22)Physially this interation represents an e�etive interation due to phonons or other e�ets. Amore realisti interation would not be ompletely loal to inlude the short range nature of thephonon propagator, but we an onsider the loal ation (3.22) as an idealization whih apturesall essential mathematial diÆulties.The basi new feature is that the singularity of the propagator is of odimension 2 in thed+1 dimensional spae-time. This hanges dramatially the power ounting of the theory. Insteadof hanging with dimension, like in ordinary �eld theory, perturbative power ounting is nowindependent of the dimension, and is the one of a just renormalizable theory. Indeed in a graphwith 4 external legs, there are n verties, 2n� 2 internal lines and L = n� 1 independent loops.Eah independent loop momentum gives rise to two transverse variables, for instane k0 and j~kjin the jellium ase, and to d � 1 inessential bounded angular variables. Hene the 2L = 2(n � 1)dimensions of integration for the loop momenta exatly balane the 2n � 2 singularities of theinternal propagators, as is the ase in a just renormalizable theory.In one spatial dimension, hene two spae-time dimensions, the Fermi surfae redues to twopoints, and there is also no proper BCS theory sine there is no ontinuous symmetry breakingin two dimensions (by the \Mermin-Wagner theorem"). Nevertheless the many Fermion system inone spatial dimension gives rise to an interesting non-trivial behavior, alled the Luttinger liquid[60℄. In two spatial dimensions or more, the key tool to orretly analyze the theory is a deom-position of the propagator analogous to (3.1), but both into disrete slies and in eah slie intodisrete angular setors. The slies are de�ned by:C = 1Xj=1Cj ; Cj(k) = fj(k)ik0 � e(~k) (3.23)where the slie funtion fj(k) e�etively fores jik0 � e(~k)j � M�j , for some �xed parameterM > 1. These slies pinh more and more the Fermi surfae as j !1.The slie propagator is further deomposed into setors:C(j)(k) = X�2�j Cj;�(k) ; Cj;�(k) = fj;�(k)ik0 � e(~k) (3.24)where �j is a set of angular pathes, alled setors, whih over the Fermi sphere. For instane ifd = 2 we may simply ut the irle intoM j intervals of length 2�M�j , but a better idea is to makethe pathes as large as possible. What limits really the size of the pathes is the urvature of theFermi surfae, so that the optimal number of suh pathes is really M j=2 for the two dimensionaljellium model [63℄, and only j2 for the two dimensional Hubbard model at half-�lling [64℄.The RG applied to this problem means as before that higher slies give rise to loal e�etsrelatively to lower slies. Integrating the higher slies one obtains e�etive ations whih govern



Vol. 2, 2001 An Introdution to Renormalization 25larger distane physis. These e�etive ations are however more ompliated than in the �eldtheory ontext. In rotation invariant models, renormalization of the two point funtion an beabsorbed in a hange of normalization of the Fermi radius. It removes all in�nities from perturbationtheory at generi momenta [61℄. But the ow for the four point funtion is a ow for an in�nite setof oupling onstants desribing the momentum zero hannel of the Cooper pairs [62℄. In the aseof an attrative interation, when the temperature is lowered to zero, this ow diverges at the BCSsale. At this sale the symmetry linked to partile number onservation is spontaneously broken,giving rise to superondutivity, that is to the ondensation of Cooper pairs.This ondensation is a nonperturbative phenomenon, like quark on�nement. But in ontrastwith quark on�nement, we know in priniple how to investigate in a mathematially rigorous waythis BCS ondensation. Indeed setors around the Fermi surfae play a role analogous to ompo-nents of a vetor �eld, so that an expansion in 1=N , where N is the number of suh omponents,ould ontrol the BCS regime [65℄, in whih ordinary perturbation is no longer valid. We mayall this situation a \dynamial 1=N" e�et. Nevertheless the full mathematial onstrution ofthe BCS transition starting from weakly interating fermions remains a long and diÆult programwhih requires to ombine together several ingredients.The disussion of high temperature superondutivity lead also to some ontroversy about thenature of interating fermions systems in the ordinary non-superonduting phase. In partiular,validity of the standard Fermi liquid theory (whih is essentially de�ned by the propagator (3.18) upto small orretions) has been questioned in two dimensions. Aording to a mathematial riteriondesigned by M. Salmhofer [68℄, it is now possible to distinguish rigorously between the so-alledFermi liquid behavior and Luttinger liquid behavior above the usual ritial BCS temperature.Using renormalization group around the Fermi surfae it should be possible to soon omplete theproof of the following theorem:Theorem 3.2 In two dimensions an interating fermion system above the ondensation temperaturean be either a Fermi or a Luttinger liquid, depending on the shape of the Fermi surfae. Thejellium model with round Fermi surfae is a (slightly anomalous) Fermi liquid [67℄, but the half-�lled Hubbard model with a square Fermi surfae should be a (slightly anomalous) Luttinger liquid[64℄. The mathematially rigorous onstrution of a two-dimensional interating Fermi liquid atzero temperature, orresponding to non-parity invariant Fermi surfaes like those obtained byswithing on a generi \magneti �eld uto�", has also been ompleted reently [69℄.Like in the previous setion the key to these onstrutive theorems lies in the resummationof perturbation theory in a single slie, and then in the iteration of renormalization group steps.Curiously, although power ounting does not depend on the dimension, momentum onservationin terms of setors in a �xed slie depends on it. This has dramati onstrutive onsequenes. Ind = 2 we have the \rhombus rule": four momenta of equal length whih add to zero at a givenvertex must be roughly two by two parallel. This means that two dimensional ondensed matterin a slie is again diretly analogous to an N -vetor model in whih angles on the Fermi surfaeplay the role of olors [66℄. This remark is at the ore of all rigorous onstrutions of interatingFermi liquids [67, 69℄.In three dimensions, we expet interating fermions to behave as regular Fermi liquid abovethe BCS temperature, but this turns out to be surprisingly diÆult to prove non-perturbatively.Indeed there is no longer any analog of the \rhombus rule". Two di�erent momenta at a vertex in agiven slie no longer determine the third and fourth: there is an additional torsion angle, sine fourmomenta of same length adding to 0 are not neessarily oplanar. More sophistiated tehniqueshave been designed to deal with this ase [70℄ but until now it is not lear that these tehniquesallow a full onstrutive analysis of the model up to the sale where the BCS symmetry breakingtakes plae.3.6 ConlusionIf we onsider the universal harater of the ation priniple both at the lassial and quantumlevel, and observe that the relation between mirosopi and marosopi laws is perhaps the
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