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Abstract. Intermediate statistics interpolating from Bose statistics to Fermi
statistics are allowed in two dimensions. This is due to the mrticular topol-
ogy of the two dimensional con guration space of identical prticles, leading
to non trivial braiding of particles around each other. One arives at quantum
many-body states with a multivalued phase factor, which enodes the anyonic
nature of particle windings. Bosons and fermions appear asao limiting cases.
Gauging away the phase leads to the so-called anyon model, whe the charge
of each patrticle interacts ‘a la Aharonov-Bohm" with the u xes carried by the
other particles. The multivaluedness of the wave function tas been traded o for
topological interactions between ordinary particles. An dternative Lagrangian
formulation uses a topological Chern-Simons term in 2+1 dinensions. Taking
into account the short distance repulsion between particls leads to an Hamil-
tonian well de ned in perturbation theory, where all pertur bative divergences
have disappeared. Together with numerical and semi-classal studies, pertur-
bation theory is a basic analytical tool at disposal to study the model, since
nding the exact N-body spectrum seems out of reach (except in the 2-body
case which is solvable, or for particular classes of -body eigenstates which
generalize some 2-body eigenstates). However, a simpli tan arises when the
anyons are coupled to an external homogeneous magnetic eldn the case of
a strong eld, by projecting the system on its lowest Landau level (LLL, thus
the LLL-anyon model), the anyon model becomes solvable, i.g¢he classes of ex-
act eigenstates alluded to above provide for a complete in@olation from the
LLL-Bose spectrum to the LLL-Fermi spectrum. Being a solvadde model allows
for an explicit knowledge of the equation of state and of the nean occupation
number in the LLL, which do indeed interpolate from the Bose to the Fermi
cases. It also provides for a combinatorial interpretationof LLL-anyon braiding
statistics in terms of occupation of single particle states The LLL-anyon model
might also be relevant experimentally: a gas of electrons ira strong magnetic
eld is known to exhibit a quantized Hall conductance, leading to the integer
and fractional quantum Hall e ects. Haldane/exclusion statistics, introduced to
describe FQHE edge excitations, is a priori di erent from anyon statistics, since
it is not de ned by braiding considerations, but rather by counting arguments
in the space of available states. However, it has been showm fead to the same
kind of thermodynamics as the LLL-anyon thermodynamics (or, in other words,
the LLL-anyon model is a microscopic quantum mechanical relization of Hal-
dane's statistics). The one dimensional Calogero model islso shown to have
the same kind of thermodynamics as the LLL-anyons thermodyamics. This is
not a coincidence: the LLL-anyon model and the Calogero modeare intimately
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related, the latter being a particular limit of the former. F inally, on the purely
combinatorial side, the minimal di erence partition probl em -partition of in-
tegers with minimal di erence constraints on their parts- can also be mapped
on an abstract exclusion statistics model with a constant om-body density of
states, which is neither the LLL-anyon model nor the Calogeo model.

1 Introduction

Quantum statistics, which is concerned with quantum many-bdy wavefunctions of
identical particles, has a long history going back to Bose dnFermi. The concept
of statistics originates at the classical level in the Gibbparadox, which is solved
by means of the indiscernability postulate for identical pdicles. At the quantum
level, the usual reasoning shows that only two types of statics can exist, bosonic
or fermionic. Indeed, since

interchanging the positions of two identical particles can only
amount to multiplying their 2-body wavefunction by a phase dctor,

a double exchange puts back the particles at their originalgsition,
and one usually insists on the univaluedness of the waveftioo,

this phase factor can be only 1 (boson) or -1 (fermion).

However, non trivial phase factor should be possible, singgavefunctions are
anyway de ned up to a phase. The con guration space of two, anore generally,N
identical particles has to be de ned cautiously [1]: denatig by C the con guration
space of a single particleG = R? for particles in the two-dimensional planed = 2),
the con guration space ofN particles should be of the typeCN =S, whereC C
.2 C= CN and Sy is the permutation group forN identical particles. Quotienting
by Sy takes into account the identity of the particles which imples that one cannot
distinguish between two con gurations related by an operabn of the permutation
group. One should also subtract fron€N the diagonal of the con guration spaceé,
i.e. any con gurations where two or more particles coincideThe reason is, having
in mind Fermi statistics, that the Pauli exclusion principle should be enforced in
some way. A more precise argument is to have a valid classitaan of paths in the
N -particle con guration space, which would be ambiguous ifwo or more particles
coinciding at some time is allowed (since they are identigatlid they cross each
other, or did they scatter o each other ?). It follows that the con guration space
of N identical particles should be

cN Dy
Cv= "5 (1)

Note that on this con guration space, a fermionic wavefungdn is multivalued
(two values 1 and -1), so there is no reason not to allow morergeal multivaluedness.
Here come some topological arguments, which allow to disguish betweend = 2
and d > 2, and, as we will see later, which can be related to spin codeiations.
In 2 dimensions,CN is multiply connected and its topology is non trivial: it is
not possible to shrink a path of a particle encircling anothreparticle, due to the
topological obstruction materialized by the latter. It folows that Cy is multiply
connected. This is not the case in dimensions higher than 2hare CN is simply



Vol. Xl, 2007 Anyons and Lowest Landau Level Anyons 79

connected, meaning that all paths made by a particle can bemuously deformed
into each other, i.e. one cannot distinguish the interior 'm the exterior of a closed
path of a particle around other particles.

These arguments imply that the equivalent classes of pathsrgt homotopy
group) in Cy are, whend = 2, in one-to-one correspondence with the elements of
the braid group

1(Cn) = By (2)
whereas, wherd > 2, they are in one-to-one correspondence with the elements o
the permutation group

1(Cn) = Sy (3)

The braid group generators ; interchange the position of particla with particle
i + 1. This operation can be made in an anti-clockwise manner {) or a clockwise
manner ( ; '). Each braiding of N particles consists of a sequence of interchanges of
pairs of neighboring particles via the ;'s and the , 's, with i =1;2;::;;N 1. The
braid group relations list the equivalent braiding, i.e. baiding that can be continu-
ously deformed one into the other without encountering a tagogical obstruction

il 0T i+l 0 i+ i ;= j i Wwhen ji jj>2 (4)

A D! 1 1+1 1+ 2 7 1+1 i+2
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Figure 1: The braid group generators and their de ning relations.

Saying that d = 2 is dierent from d > 2 is nothing but recognizing that
i 8 ,*whend =2, whereas ; = ;' whend > 2 (; can be continuously
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deformed into , ! when particlesi andi+1 are not stuck in a plane). It follows that
whend > 2, the braid generators ;'s de ned by (4) with the additional constraint
i = ;! are the permutation group generators.

Note also that the d = 2 paradigm, ; 6 !, hints at an orientation of the
plane, a hallmark of the presence of some sort of magnetic delThis point will
become apparent in the Aharonov-Bohm formulation of the amn model.

The fact that CN is multiply connected whend = 2 and not whend > 2 can also
be related to the rotation groupO(d), and thus to some spin-statistics considerations
[2]. When d > 2, the rotation group is doubly connected, [(O(d)) = Z,], its
universal covering, for example whed = 3, is SU(2), which allows for either integer
or half integer angular momentum states, that is to say eittresingle valued or double
valued representations of the rotation group. On the otherdnd, whend = 2, the
rotation group is abelian and in nitely connected [ ;(O(2)) = Z], its universal
covering is the real line, that is to say arbitrary angular mmenta are possible,
and therefore multivalued representations. One can see ke hint about the spin-
statistics connection, where statistics and spin are trial (Bose-Fermi statistics,
integer-half integer spin) whend > 2, and not whend = 2.

Let us consider the simple one-dimensional irreducible negsentation of the
braid group, which amounts to a common phase factor exp( ) for each gen-
erator (and thus exp( ) to 1). It means that a non trivial phase has been
associated with the winding of particlei around particlei + 1. Higher dimensional
representations (quantum vector states) are possible -orspeaks of non abelian
anyons, in that case not only a non trivial phase materialize during a winding,
but also the direction of the vector state in the Hilbert spae is a ected- but they
will not be discussed here (even though they might play a role the discussion of
certain FQHE fractions [3], and, in a quite di erent perspetive, in the de nition of
topologically protected fault-toleraqt guantum computes [4]).

Clearly, whend > 2, ; = , “implies =0or =1, ie. Bose or Fermi

statistics (an interchange leaves the wavefunction unchgaed or a ected by a minus
sign).

From now on let us concentrate ond = 2 and denote the free many-body
wavefunction of N identical particles by Y+ +;:::;#n ). Indeed, statistics should
be de ned for free particles with Hamiltonian

X
Hy = o=
NT O om (5)
i=1
and special boundary conditions on the wavefunction, as ilné Bose case (symmetric
boundary condition) and the Fermi case (antisymmetric boutlary condition). As
already said, Y+ +»;:::;+y) is a ected by a phase exp(i ) when patrticlesi and

i +1 are interchanged: one can encode this)r(mn trivial exchaagproperty by de ning
Ve i) = exp( i i) (i i) (6)
i<j
where (#1; +2;::1; fn) is a regular wavefunction, say bosonic by convention, ang
is the angle between the vector, ¥ +; and a xed direction in the plane. Indeed

interchangingi with j amounts to j; ! , Which altogether with the bosonic
symmetry of (¥q;+;:::; ), leads to

Cro gy ) =exp( i) Tk o gy i) (7)
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By the above bosonic convention for (; ¥,; ::;; v ), the statistical parameter
even (odd) integer corresponds to Bose (Fermi) statistic#t. is de ned modulo 2,
since two quanta of ux can always be gauged away by a regulangge transfor-
mation while preserving the symmetry of the wavefunctionsnithe Bose or Fermi
systems. Indeed, (6) can be interpreted as a gauge transf@tion. Let us compute
the resulting Hamiltonian Hy acting on  (+q; +2; 2 )

=" L Ay’ ®)
N — - om f |
where x X
R N +:
A(f)= @& W)= — 9)
k<l jjei i
is the statistical potential vector associated with the mulvalued phase (the gauge
parameter). The free multivalued wavefunction has been

traded o for a regular bosonic wavefunction with topologial singular magnetic
interactions. The statistical potential vector (9) can be vewed as the Aharonov-
Bohm (A-B) potential vector that particle i carrying a chargee would feel due to
the ux tube carried by the other particles, withe and related to the statisti-

cal parameter by =e=(2 )= = o( o =2 =e is the ux quantum in units

~ = 1). The resulting composite charge- ux picture is known uder the name of
anyon model [5] since it describes particles with "any" (arpn) statistics.
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Figure 2: The two equivalent formulations of anyon statistics in terms, on the left, of a punctured
plane and, on the right, of usual bosonic particles interacing via topological A-B interactions.
The loop of particle i around particle j cannot be continuously deformed to nothing due to the
topological obstruction materialized by the puncture at the location of particle j .

Computing the eld strength one obtains

X RN+ 2 X
—o" = () (10)
€ jij 8i j e jij 8i
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meaning that each particle carries an in nite singular magetic eld with ux =
2 =e . The gauge transformation is singular since it does not pewe the eld
strength (which vanishes in the multivalued gauge and is syular in the regular
gauge). This is due to the singular behavior of the gauge pangter ;; when particle
I come close to particlg , thus the singular Dirac (t ) function in the eld strength.

It is not surprising that topological A-B interactions are & the heart of quan-
tum statistics. In its original form, the A-B e ect [6] consists in the phase shift in
electron intggference due to the electromagnetic eld, detmined by the phase factor
exp[(ie=—c) A dx ] along a closed curve passing through the beam along which

the eld strength vanishes. This e ect' is counter-intuitive to the usual understand-
ing that the in uence of a classical electromagnetic eld ora charged particle can
only occur through the local action of the eld strength. In the context of quantum
statistics, it means that non trivial statistics arise through topological "in nite"-
distance interactions where no classical forces are preseas it should and as it
is the case for Bose and Fermi statistics. Finally, singulamagnetic elds give an
orientation to the plane, which, as already said, shows up in 6 . 1.

All this can be equivalently restated in a Lagrange formulabn which describes
again the system in topological terms, i.e. free particles imimally coupled to a
potential vector whose dynamics is not Coulomb-like (MaxweLagrangian) but
rather Chern-Simons [9]

3 Z
=" Gme+aAmy AAR) 5 A @A (1)
i=1
with the completely antisymmetric tensor (the metric is (£ ; );

X = (t+) = (YA = (AsAGA)); o1z = %2 = +1). Solving the Euler-
Lagrange equations, in particular

X
(@;;O): N @Am=e (¢ w) (12)

j=1
leads to a magnetic eld proportional to the density of partcles in accordance with
(10). Solving this last equation forA(¥) in the Coulomb gauge gives

@

e X ko(e ¥)
(+ )2

A)= 5 (13)

j=1

in accordance with the A-B potential vector (9). Here againtiere is no Lorentz force,
the potential vector is a pure gauge, the Chern-Simons terms imetric independent,
and the eld strength is directly related to the matter current.

Coming back to the Hamiltonian formulation (8), one might ak how the ex-
clusion of the diagonal of the con guration space materiaes in the Hamiltonian
formulation. One way to look at it is perturbation theory [1Q 11]. Let us simplify
the problem by considering the standard A-B problem, i.e. aharged particle in the
plane coupled to a ux tube at the origin with the Hamiltonian

1 RN £,
H=-(p ) (14)

1The e ect was rst experimentally con rmed by R. G. Chambers [7], then by A. Tonomura [8].
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Let us see what happens close to Bose statistics when' 0 (by periodicity
can always been chosen in [1=2;+1=2], an interval of length 1, since in the one-
body case one quantum of ux can always be gauged away via a uéy gauge
transformation). The A-B spectrum [6] is given by the Bessdlinctions

. K2
_dlq _
(r)= € J jkr) E om (15)
with wavefunctions vanishing close to the origim ! 0 asJ; j(kr)' r' 1. When

the angular momentum| 6 O, this is the only possible locally square-integrable
function. However, whenl = 0, one could have as well; ;(kr) as a solution, since
it is still locally square-integrable even though it divergs at the origin asr! I. In
principle, the general solution in thel = 0 sector should be a linear combination of
Jj j(kr) and J; (kr), introducing an additional scale in the coe cient of the linear
combination [12]. Restricting the space of solutions as irl%), i.e. wavefunctions
vanishing at the origin, means that a short-range repulsiverescription has been
imposed on the behavior of the wavefunctions when the parléc comes close to
the ux tube. One can give a more precise formulation of thisakct by trying to
compute in perturbation theory the spectrum (15). Expandig the square in the
Hamiltonian (14), one nds that the ?=r? term, which is as singular as the kinetic
term, is divergent at second order in perturbation theory inthe | = 0 sector. It
follows that perturbation theory is not well de ned in the problem as de ned by the
Hamiltonian (14). A renormalization has to be implementedone realizes that by
adding the counterterm | j (¥) to (14), i.e. by considering

1 RM+e, 2]
e G L (16)

the perturbative divergences due to the ?=r? term are exactly cancelled by those
arising from the j j (¥) term at all orders in perturbation theory, giving back the
spectrum (15). Physically, this repulsive contact term means that the particle
is prevented from penetrating the core of the ux tube wherehe eld strength
is in nite, thus the (at least) r/ I behavior whenr ! 0. Note that this has been
achieved without introducing any additional scale in the poblem.

Clearly, in the N-body A-B anyon formulation of the model, the corresponding
renormalized Hamiltonian should read

A
Hn = %(ﬂ
i=1 i6i

X R, 200

(i) (17)
i6

realizing the quantum mechanical exclusion of the diagonalf the con guration
spagg in terms of contact repulsive interaction between pasles. Note that the term

j 1 e (f5)in(17) can also be viewed [11] as the Pauli spin coupling dfe spin
of the particles to the singular magnetic eld (10) associad to the ux tubes.

The anyon model de ned in (17) is properly de ned as far as shidistance con-
siderations are concerned. It is the interacting formulatin for regular wavefunctions
of the free particles formulation for multivalued wavefunttons. Both Hamiltonians
Hyn andHQ are equivalent, the former being more familiar in terms of wsl quantum
mechanics, the latter more relevant to study braiding and widing properties.
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The anyon model has been the subject of numerous studies iretkighties and
the nineties [13], some of them analytical, starting with te 2-body case which is
solvable since its relative 2-body problem is the usual A-Brpblem (14) with an
even (Bose) angular momentunm. The exact solution [1, 5] for the relative 2-body
problem is given by (15),| being an even integer, therefore when is odd, | is
odd, corresponding to Fermi statistics (the periodicity ! 2p is manifest in
the shift | ! | ). These studies were followed by the 3-body [14] and then the
N -body problem [15]. Statistical mechanics was also congidé (second virial coe -
cient [16, 17], third virial coe cient [18]). However, it soon became apparent that a
completeN -body spectrum was out of reach, to the exception of particait classes of
exact eigenstates generalizing the 2-body eigenstates.mrical [19] as well as semi-
classical [20] studies were performed giving indications ¢he low energyN -body
spectrum. A systematic study of the model was achieved at t§21] and at second
order [22] in perturbation theory (at second order the compkity of the model shows
up clearly). Numerical studies [23], taking some input fronthe perturbative results,
were performed for the 3rd and 4th virial coe cients. Last bu not least, on the
experimental side, Laughlin quasiparticles [24] were pubfward as the elementary
excitations of highly-correlated fractional quantum Hallelectron uids [25]. They
were supposed to carry a fractional charge and to obey anyotatsstics [26], a fact
con rmed by Berry phase calculations, at least for quasihek [27] (for quasiparticles
the situation is less clear). The quasiparticles can propatg quantum-coherently in
chiral edge channels, and constructively or destructivelynterfere. Unlike electrons,
the interference condition for Laughlin quasiparticles l&a non-vanishing statistical
contribution which might be observed experimentally [28].

Some kind of simpli cation had to be made to render the model ore tractable,
and possibly solvable, at least in a certain sector. One rézdd that this was the case
if one considered, in addition to the singular statistical ragnetic eld, an external
homogeneous magnetic eld perpendicular to the plane, to wih the charge of the
anyons couple. In the case of a strong magnetic eld, by prajeéng the system of
anyons coupled to the magnetic eld in its LLL, the model becmes solvable meaning
that one can nd a class ofN -body eigenstates which interpolates continuously from
the LLL-Bose to the LLL-Fermi eigenstates basis: this is theLL-anyon model [29].

2 The LLL-anyon model

From now on, let us set the mass of the particlesy = 1 and choose the statistical
parameter 2 [ 2;0]. It is understood that all the results below are obtainedar
in this interval, but they can be periodically continued to the whole real axis. Before
introducing an external magnetic eld, let us come back to tbB anyon Hamiltonian
(17) and take advantage of wavefunctions vanishing at leastsr; whenr ! 0
(exclusion of the diagonal of the con guration space in the wantum mechanical
formulation) by encoding this short distance behavior in te N -body bosonic wave
function [10] Y

(Pt i) = 1y (R f2y i) (18)

i<j

(+1; *0; 121 ) IS regular but does not have to vanish at coinciding pointdz=rom Hy
in (17) one can compute the new Hamiltonian Hy acting on
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~(#1;+2; 25 F ). Since Hy is itself obtained from the free HamiltonianH$ in (5)
via the singular gauge transformation (6), it is more transgrent to start directly
from the free formulation. In complex notation (the free Harittonian is HY =
2 iN=1 @@) the wavefunction rede nitions (6) and (18) combined take he sim-
ple form
Y
iz isn) = gy (o ze i ez 2o zy) - (19)

i<j

The Jastrow-like prefactor ~ ., z; in (19) encodes in the wavefunction the essence
of anyon statistics: topological braiding phase and shodistance contact exclusion
behavior. It is immediate that Hy rewrites as

X X 1
HN = 2 @@+2

i=1 i<j

(@ @ (20)

Z; Zj

It is a non-Hermitian Hamiltonian (the transformation (19) is non-
unitary), but it has a simple form, linear in and well de ned in perturbation
theory (it is perturbatively divergence free). Any analytc wavefunction of thez's is
a N-body eigenstate ol , and therefore of theN -anyon Hamiltonian (17) taking
into account (18). Analytical eigenstates are known to livén the LLL of a magnetic
eld, if such a eld were present. Let us couple the electriclarge of each anyon
to an external magnetic eld B perpendicular to the plane such that by convention
eB > 0 and let us denote byl . = eB=2 half its cyclotron frequency. One now starts
from the Landau Hamiltonian

X
Hi= 2 (@ )@+ S7) @)

In a magnetic eld, the 1-body eigenstates have a long-distae Landau exponen-
tial behavior exp( %! ¢Ziz). Let us also encode this behavior in the wavefunction
rede nition (19) so that it becomes

Vz1; 227 2w 5 205 205 iy 2n ) =

Y 1
zy exp( S'e  zz) (Zuzitnavizgziiz) (22)
i<j i=1
One obtains
X X 1
Hn= 2 (@@ !zz@+2 (@ @+ Nl (23)
i=1 i<g ]

where the trivial constant energy shift from the Pauli couphg to the magnetic eld
has been ignored. As announcedffy acts trivially on N-body eigenstates made of
symmetrized products of analytic 1-body LLL eigenstates

Zi; i 0, E=1, (24)
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(in (24) the Landau exponential term is missing since it hasl@ady been taken into
account in (22)). So, up to an overall normalization,

Y\I
(Z1;22;000 2021, 25 2 2 ) = Sym z'; O Iy I =y (25)

i=1
is an eigenstate with a degenerathl -body energy,En = N! ¢, a mere re ection of
the fact that there are N patrticles in the LLL. From (22) and (25) one nally gets

Y X W

1 _
Nz1; 20,20 20 205000 20) = z; exp( é! ¢ ZZ)Sym zi";
i<j i=1 i=1
0O Iy |, =i Iy (26)
The basis (26) continuously interpolates when = 0 ! 1 from the complete
LLL-Bose N-body basis to the complete LLL-FermiN -body basis. Indeed, when
= 1,
1 X Y W y
Nz1; 200 20 70 20 0z ) = exp( 5! ¢ Zz) z;Sym z;
i=1 i<j i=1
0 |1 |2 ... ||\| (27)
is equivalent to
1 X . Y 10
Nz1; 20, 20 703 200000 Zn ) = exp( é! ¢ Zz)Antisym z';
i=1 i=1

0<I1%<I9<:m<I (28)

i.e. the LLL fermionic basis. One has therefore obtained a mplete LLL-Bose!
LLL-Fermi interpolating basis which allows, in principle,for a complete knowledge
of the LLL-anyon system with statistics intermediate betwen Bose and Fermi statis-
tics.

One could ask about going beyond the Fermi point = 1 up to the Bose point

= 2. This question is related to the validity of the LLL projecion, since ignoring
higher Landau levels amounts to assuming that excited non ILLstates above theN -
body LLL ground state have a non vanishing gap. Consideratis around the Fermi
point, as well as numerical and semiclassical analysis, gagpt [29] this scheme as
long as does not come close to 2. However, when ! 2, known linear as well
as unknown nonlinear non LLL eigenstates do join the LLL grond state [31]. Said
di erently, the LLL-anyon basis (26) does not constitute a omplete LLL-Bose basis
when ! 2, i.e. someN -body LLL bosonic quantum numbers are missing at this
point. We will come back to this issue later.

One has not seen yet any dependence in theN-body energy, a situation
already encountered in the 1-body A-B problem, where the feecontinuous energy
spectrum (15) is -independent. This is due to the fact that a magnetic eld dos not
con ne particles: classical orbits are circular cyclotrororbits, but their centers, due
to translation invariance, are located anywhere in the plaa Translation invariance
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Figure 3: Linear and non linear non LLL eigenstates merge inthie LLL ground state at the bosonic
values of .

in turn gives, in quantum mechanics, a Landau spectrum whicls |; independent,
and therefore in nitely degeneraté. The degeneracy factor scales as the in nite
surfaceV of the 2d sample: it is the ux of the magnetic eld counted in wits of
the ux quantum =2 =e (in units ~=1)

N = — (29)
0
Statistical interactions being topological interactions one does not expect, in the
in nite plane limit, any e ect on the N-body energies. To see such an e ect, one
has to introduce a long-distance con nement, like putting the particles in a box.
Let us rather introduce [30] a more convenient harmonic wetbn nement where the
particles are trapped, so that the Landau Hamiltonian (21) bcomes

X eB eB 1 X
HY= 2 (@ —z)(@+ —z)+ 5!%  zz (30)
. 4 4 2
i=1 i=1
The virtue of the harmonic con nement is to lift the degeneray with respect to

the angular momentum|; of the 1-body Landau eigenstates: the harmonic LLL
spectrum® becomes

S

p li+l

';_'zi'iexp( %!tzizi); i 0; E=('y ')(h+1)+ !, (32)

2From this point of view one can argue that the Landau spectrum is continuous, albeit being made of discrete
Landau levels, due to the in nite degeneracy on each level.
3The complete 2d harmonic Landau spectrum is, with the conven tion eB > 0,

'e@nj+ i +1) Iile; ny 0 1122 (31)

The LLL quantum numbers are n; =0and |; O.
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where! ; = P I 2+ 1 2. Each harmonic LLL level in (32) has now a nite degeneracy,
with an eigenstate still analytic in z;, up to the long-distance harmonic Landau
combined exponential behavior. Let us take into account teiexponential behavior
in the rede nition of the free N -body wavefunction so that (22) now becomes

Nz 2020 20 203 100 20 ) =
Y 1

zj exp( Ste  7z) (Zuz i ani 2 2 2n) (33)

i<j i=1

Starting from the Hamiltonian (30) one obtains [32, 33]

X Ll L L
= 2 (@@ > 4@ > 4@
X 1 !

Tt !C
(@ @ 5N @9

+2

- Z;
i<j

Again let us act onN -body eigenstates made, in analogy with (25), of symmetride
products of the 1-body harmonic LLL eigenstates (32)

\N
(21,25, 203 21, 22, 2 Zn ) = Sym z'; O 11 I v Iy (35)
i=1

Acting on this basis, the Hamiltonian (34) rewrites as

X
He=(l: 'o) 2@ wﬂwﬂ\uc (36)
i=1
so that the N -anyon energy spectrum is
X
Ev=re tg o O D e (37)

i=1

The N-anyon spectrum (37) is a sum of 1-body harmonic LLL spectranifted by
the 2-body statisticalterm (!y !N (N 1)=2. The e ect of the harmonic well
has been not only to lift the degeneracy with respect to thk's, but also to make the
energy dependence on explicit. When computing thermodynamical quantities like
the equation of state, the harmonic well regulator will alsdbe needed to compute
nite quantities in a nite \narmonic" box, and then take the thermodynamic limit,
by letting ! ! 0 in an appropriate way.

The resulting eigenstates from (33)

Y 1 X v
iz oz zminn) =z exp( 5l zz)Sym 7
i<j i=1 i=1
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are called "linear states" since their energy (37) variesniearly with . As already
stressed, they constitute a set of exadti -body eigenstates which is only a small part
of the completeN -body spectrum, which remains mostly unknown. However, wha
makes, in the LLL context, these linear states particularlyinteresting is that they
continuously interpolate when =0! 1 from the complete harmonic LLL-Bose
basis to the complete harmonic LLL-Fermi basis.

Before turning to LLL-anyon thermodynamics, let us reconder the physical
charge- ux composite interpretation of the anyon model, wére the charges are
now coupled to an external magnetic eld. A given particle, &y the Nth, sees a
\positive" ( eB > 0) magnetic eld perpendicular to the plane, andN 1 \negative"
(e =2 < 0, 2] 10]) point vortices piercing the plane at the positions of the
other particles. This is a screening regime: in the large limit where a mean eld
picture is expected to be valid, the more is close to the fermionic point = 1, the
more the external magnetic eld is screened by the mean magdite eld associated
with the vortices. In terms of the total (external + mean) magietic eld hBi that
the Nth particle sees, or rather in terms of its uxVHhBi, or, when counted in units
of the ux quantum, in terms of the Landau degeneracyN_ i, one has

VIBi= o=(VB)= o+(N 1)= o ice MNi=N_+(N 1) (39)

Moving away from the Bose point, i.e. 0, asN increases the numbehN i of
1-body quantum states available for theN th particle in the LLL of hBi decreases.
This sounds reasonable, bearing in mind that a fermion occigs a quantum state
to the exclusion of others (Pauli exclusion), whereas bosbran condense (Bose
condensation). Introducing the LLL lling factor

N
= — 4
N (40)
one deduces from (39) a maximal critical lling [29] for whik the screening is total,
H\lLi =0
1

(41)

This is nothing but recognizing once more that bosons (= 0) can in nitely Il a
guantum state ( = 1 ), whereas fermions ( = 1) are at most one per quantum
state ( =1). In between, one nds that there are at most 1= anyons per quantum
state.

Interestingly enough, Haldane/exclusion statistics de ition happens to coin-
cide with (39): for a gas of |particles obeying Haldane/
exclusion statistics [34] with statistical parameterg 2 [0;1], given N_. degener-
ate energy levels andN 1 particles already populating the levels, the numbedy
of quantum states still available for theN th particle is given by (39) where is
replaced byg

dv =N. (N 1)g (42)
On the one hand, Haldane's de nition (42) stems from an arbiary combinatorial
point of view, inspired by the Bose and Fermi counting of stas. On the other hand,
in the LLL-anyon model, (39) is obtained from a somehow ad-lsanean eld ansatz.
We will come back to these issues in the next section.

4This is Haldane's statistics for one particle species. It ca n be generalized to the multispecies case.
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3 LLL-anyon thermodynamics
Let us rewrite the N-body energy (37) as [37]

X N(N 1
En = (ot lhih) NN 1)
i=1
with + =(!y ! and o="!.. Introducing the fugacity z and the inverse temper-
ature , one wants to compute the thermodynamic potential

L_. e
s 0 Loy (43)

X
Inz(;z)=In( zZNZy);, Zo=1 (44)

N =0
whereZ( ;z) is the grand partition function de ned in terms of the N -body parti-
tion functions Zy = Trexp( H ) = Trexp( P n) =Trexp( Hy). The ther-
modynamic potential rewrites as IZ( ;z) = ﬁ=1 b,z" where, at orderz", the
cluster coe cient b, only requires the knowledge of th&;'s, with i  n. One is in-
terested in evaluating the thermodynamic potential in the hermodynamical limit,
i.e.! is small, which means, here, that the dimensionless quantit! is small. The
N -body spectrum, as given in (43), allows to compute, at leaatj orderin ! ! 0,
the Z;'s fori n, and thus theh,'s

1emeY'k+n 1,
e AR (43)
k=1

One has still to give a meaning, in the thermodynamic limit! =0, to the scaling
factor 1=( k) in (45). To this purpose, one temporarily switches o the agonic
interaction and the external magnetic eld, and considers auantum gas of non
interacting harmonic oscillators per se. One asks, wheh ! 0, for its cluster
coe cients to yield the in nite box (plane wave) cluster coecients. At order n in
the cluster expansion, ind dimensions, one obtains [10]

. Vv

!“r!no(n(! )2) d
where = p2— is the thermal wavelength andV is the d-dimensional in nite
volume (in d = 2 dimensions, V is, as de ned above, the in nite area of the 2d
sample). Using the thermodynamic limit prescription (46),the cluster coe cient
(45) rewrites, in the thermodynamic limit, as [29]

b, =

[NE=%

(46)

e <Yl k+n .
b = N_ N K ; bh=N,e "¢ (47)
k=1

. P .
The cluster expansion IrZ(;z) = ﬁ=1 h,z", as a power series ofze
< 1, can be summed up

'e

INZ(:z)= N_Iny(ze ') (48)

wherey(ze ° ©), a function of the variableze ° ¢, is such that

Lo R (ze oY k4 n
Iny=2ze "¢+

(49)
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It obeys [29]

y ze '°yt* =1 (50)
and has in turn a power series expansion [38]
b3 Y k +
y=1+ze '+ (ze ') kn (51)
n=2 k=2

From (48) one infers thatZ( ;z) = yN- so that [32, 39]

s W
Z(;z)=y" =1+ Npze '*+N_  (ze ' )" k+NLLN - (52)
N =2 k=2
Clearly, from (52), the N -body partition function Zy is
W
Zy = NeN'e K+ N+ N ! (53)

k=2 K
It is, by construction, positive. Necessarily, and N, being given,N has to be such
that N, + N 0. This always is the case as long &$ is nite, since N, scales like
the in nite surface of the 2d sample. In the thermodynamic hit, where N I'1 |
the condition N + N 0 implies for the lling factor

1 (54)

It is rather striking that the RHS of (54), which has just beenderived from the
exact computation of the cluster coe cients from theN -body spectrum, is nothing
but the critical Iling (41) obtained in the mean eld approach when the screening
is total.

The \degeneracy\ associated witiN anyons populating the LLL quantum states
is, from (53),

N\”k+NL+N 1_NL(N+N +N 1)
" k T N! (NL+N )

(55)

where a factorial with a negative argument has to be understa as ( p)! =lim 4 ¢
( p+x)L

When =0, this is the usual Bose counting factor for the number of wgs to
put N bosons inN_ states

(N +N_ 1)

NI(N, 1) (56)
When = 1, thisis the Fermi counting factorN_!=(N!(N_.  N)!). If one considers
for a moment the statistical parameter to be a negative integy 1, the

degeneracy (55) still allows for a combinatorial interprettion [38] : provided again
that N. + N 0, it is the number of ways to putN particles on a circle consisting
of N quantum states such that there are atleast 1 empty states in between two
occupied states. When = 1, this is nothing but the usual exclusion mechanism
for fermions (one fermion at most per quantum state). When 1, i.e. beyond
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the Fermi point, more and more states are excluded betweendwlled states. In the
case of interest in[ 1;0], one has a "fractional\ exclusion where one can put more
than one patrticle per quantum state according to the fractioal , but not in nitely
many as in the Bose case.

The degeneracy (55) originates from the exadt -body spectrum (37). In the
case of Haldane statistics as de ned in (42), there is no Halainian and no N -body
spectrum to begin with. One rather starts from the Bose coumg factor (56) and
bluntly replaces, in accordance with (42)N_. by N, (N 1)g to obtain

(NL (N I)(g L),
NI(N. (N 1)g 1)V

(57)

which indeed interpolates, whery = 1, to the Fermi counting factor. The degeneracy
(57) is similar to (55): if one allows the exclusion parametey to be an integer, it
counts [38] the number of ways to pulN particles on a line of nite length consisting
of N quantum states such that there are at leasgy 1 empty states in between
two occupied states. Up to boundary conditions on the spacé available quantum
states (periodic versus in nite wall), both counting (55, %) are identical. In the
thermodynamic limit when N becomes large, boundary conditions should not play
a role anymore: not surprisingly, starting from (57) and fabwing the usual route of
statistical mechanics [40] (saddle-point approximationeads, in the thermodynamic
limit, to the same LLL-anyon thermodynamic potential givenby the equations (48)
and (50), where the anyonic parameter is replaced by the exclusion parameter
g.

Note that the grand partition factorization Z( ;z) = yN- in (48) could suggest
[41] an interpretation of y as a LLL-anyon grand-partition function for a single
quantum state at energy! ., on the same footing as, when = 0 or = 1,

=(1 ze ') lisindeed the single quantum state grand partition functiorfor

a Bose or Fermi gas. This interpretation is not possible forhe reason advocated
above: it would yield, as soon as is fractional, negativeN -body partition functions.
This is clearly impossible: theN -body anyonic system is, except in the Bose and
Fermi cases, truly interacting and therefore its statistial mechanics is by no means
factorisable to a single-state statistical mechanics.

From (48, 50), the average energig @nZ(;z)=@ and the average parti-
cle numberN z@nZ(;z)=@ar, equivalently, the lling factor = N=N_, can
be computed. satis es

y=1+

1+ (58)

or, equivalently, using (50)

S @y ) A ) )

When 6 0and 6 1, this equation cannot in general be solved analytically,
except in special cases like = 1=2 (semions). The equation of state follows

) (60)

=In(1+ T+

In all these equations, it is understood from (54) that 1= . When = 1=,
the pressure diverges, a manifestation of the fact that therare as many anyons
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as possible in the LLL, higher Landau levels being forbidddnmy construction. One
also notes that, for the degenerate LLL gas, the lling factoin (59) is nothing but

the mean occupation numbemn at energy = ! . and fugacity z. As expected, (59)
at =0 gives the standard Bose mean occupation number= ze =1 ze ),
whereasat = 1itgivesthe Fermi mean occupation numbemn = ze =(1+ze ).

The entropyS InZ(;z)+ E (Inz)N is (trivially E = N! ; since theN
particles are in the LLL)

S=N, (1+ (1+ )@+ @+ ) @+ )@+ ) In (61)

It vanishes when = 1= , an indication that the N-body LLL anyon eigenstate is
not degenerate at the critical lling. From (37), one infershat the N -body eigenstate
of lowest energy has all its one-body orbital momenta quamu numbersl; = 0. It
follows from (26) that, in the thermodynamic limit at the critical lling, the LLL-
anyon non-degenerate groundstate wavefunction is

Y 1 X
Nz1; 20502020, 20, 20 20) = z; exp( é! ¢ ZZ),
i<j i=1

(62)

with total angular momentum

N(N 1
2
The pattern in (62) is reminiscent of the Laughlin wavefunagbns at FQHE llings
=1=2m+1)

+ 1
(z1;22 0020 20, 205 2 ZN) = z"?m L exp( Q! ¢ Zz),
i<j i=1
1
2m+1

(64)

On the one hand, Laughlin wavefunctions are fermionic, theilling factors are ratio-
nal numbers smaller than 1, and they are approximate solutis to the underlying
N -body Coulomb dynamics in a strong magnetic eld. On the othehand, LLL-
anyon wavefunctions are multivalued, their lling factor cntinuously interpolates
betweenl and 1, and they are exact solutions to thé&l -body LLL anyon problem.
Still, the similarity between (62) and (64) is striking.

Trying to push (62) further beyond the Fermi point eventualy up to the Bose
pointat = 2, one obtains a Bose gas at lling = 1=2 with the non-degenerate
wavefunction

2 1 X
Nz1; 205020 203 22 0 2) = z; exp( 5! ¢ Zz), =
i<j i=1

(65)

NI =

One already knows that the LLL-anyon basis (26) is not interplating to the com-
plete LLL-Bose basis when = 2. At this point, non LLL N-body eigenstates
merge in the LLL ground state to compensate for some missingdonic quantum
numbers -see Figure 3. Clearly, (65) should reproduce, byrmalicity, the bosonic
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non-degenerate wavefunction (62) at = 0, but it does not. On the same footing,
when = 2the critical lling should be bosonic, i.e. = 1 ,whereas =1=2. The
unphysical critical lling discontinuity, 1 versus E2, is yet another manifestation
of the missing bosonic quantum numbers. In other words, theexy eigenstates which
join the LLL ground state at the Bose point = 2 and provide for the missing
guantum numbers, have the e ect to smooth out the critical ling discontinuity.
Still, it has been shown [35] that the stronger the magneticeld B is, the more valid
(62) remains closer and closer to = 2. The limit ! 2 is, due to periodicity,
the same as the limit ! 0 from above, which can be described as an anti-screening
regime. One concludes that close to the Bose point = 0, the critical lling of a
LLL-anyon gasis = 1 or = 1=2 depending on in nitesimally moving away
from the Bose point in the screening regime (the ground stateavefunction is the
usual non degenerate bosonic wavefunction), or in the argereening regime (the
ground state wavefunction is (65)). Again, the Bose point lea somehow singular
behavior, a feature already encountered in perturbation #ory. Note nally that the
occurrence of the = 1=2 fraction for the bosonic lling factor in the antiscreen-
ing regime is physically challenging: fast rotating Boseifistein condensates in the
FQHE regime are expected [36] to reach a2 lling described by the Laughlin-like
wavefunction (65).

Figure 4: The critical LLL-anyon lling curve as a function o f . The critical Bose ling = %
occurs at the Bose points in the anti-screening regime. Theantinuity of the critical curve at these
points is restaured by the non LLL eigenstates joining the LLL ground state.

So far one has been concerned with two-dimensional systeiinsthe thermody-
namic limit, a single particle in the LLL, and, consequentlya gas of LLL-anyons,
are two dimensional, as can be seen from tidy 'V scaling$ of the 1-body LLL
partition function Z,,, = N_exp( ! () and the LLL anyon thermodynamic po-
tential (48). Denoting by . ()= N_ ( !.) the 1-body LLL density of states,

51n the LLL there is only one quantum number |; per particle, still the system is 2d.
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(48) can be rewritten as
z 1
InZ(;z)= e ()Iny(ze )d (66)
0
Convincingly, in (66) the one-body dynamics of individual prticles is described by
the one-body density of states, whereas the LLL anyon statiisal collective behavior
is encoded in they function which depends on the statistical parameter .

One might ask about other integrableN -body systems which would lead to
the same kind of statistics. It would be tempting to de ne a mdel obeying frac-
tional/exclusion statistics if, its one-body density of sates () being given, its
thermodynamic potential has the form

Z 1
InzZ(;z)= ()Iny(ze )d (67)
0
with
y ze y¥ =1 (68)
so that
X Y k+n
y=1+ ze + (ze )" " (69)
n=2 k=2
The mean occupation number follows as = z@n y=@zIt obeys
_ n . _ .y 1
y=1+ Tr or n——1 v D 0 (70)
or, equivalently,
ze = 0 (72)
A1+@+ )nmt (1+ n)
One has the duality relation [41]
1= 1, }; where y- (ze ) =1 (72)
y ¥
or, equivalently
n 1ﬁ =1 (73)

where n-is related to y-asn to y in (70). The duality relation (72,73) can be in-
terpreted as a particle-hole symmetry relation. Setting = ze ' ¢, one also has a
simple expression [42] fodn(t)=dt
tz—? =n@+@+ )N)(1+ n) (74)

All these equations have been understood as arising micropically from the
LLL anyon Hamiltonian with one-body density of states ( ) = .. (). It happens
that it is possible to nd another N-body microscopic Hamiltonian which leads
to the thermodynamics (67). Consider, in one dimension, thmtegrable N-body
Calogero model [43] with inverse-square 2-body interactie

~ 1)(\' @ X 1 1 ZX\' X
Hy = éi:@—%-'- 1+ ). X X2 Xj)2+§! X; (75)

i<j i=1
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where Xx; represents the position of thei-th particle on the in nite 1d line. This
model is known to describe particles with nontrivial statiics in one dimension
interpolating from Bose ( = 0) to Fermi ( = 1) statistics. It means that the
1=x? Calogero interaction is purely statistical, without any chssical e ect on particle
motions, up to a overall reshu ing of the particles [44]. TheCalogero model remains
integrable when, as in (75), a conning 1d harmonic well is ated. This is the
harmonic Calogero model, whereas the Calogero-Sutherlanmbdel [46] would have
the particles con ned on a circle. The e ect of the harmonic wll is, as in the LLL
anyon case, to lift the thermodynamic limit degeneracy in sth a way that the
N -body harmonic Calogero spectrum ends up depending on thel@gero coupling
constant
X

i M+N§; 0 Iy I = Iy (76)

Here the l;'s correspond to the quantum numbers of the 1-d harmonic Heita
polynomials free 1-body eigenstates

P oga 1 — 1
(—)1_4%6 %!X l2H|I(p Ix |), || 0, =1 (|| + é) (77)
| i'
It is remarkable that (76) happens to be again of the form (43With + = I,
o = != 2. Following the same steps as in the LLL-anyon case, and ugiagain (46)
while taking the thermodynamic limit ! ! 0, the Calogero cluster coe cients
rewrite as v
+
= E p:\l'_ K n ; = E (78)
nn, _, k

where the in nite length of the 1d line has been denoted bly. The cluster expansion
can still be resumed using (49) provided the unwanted=1 n term in (78) is properly
taken care of. Introducing the 1d plane wave momenturk

Z
I -
—p—ﬁ =7, dke (79)
and denoting the 1-body energy as= k=2, one nally obtains
Z 1
InZ(;z)= o( )Iny(ze )d (80)
0
where L
o )= b= (81)
is the free 1-body density of states in one dimension. This i®t a surprise: in the
thermodynamic limit ! ! 0, wherel; ' 1 with I;! = k?=2 kept xed, the Hermite

polynomial H;, becomes a plane wave of momentukj.
From (80), one concludésthat, in the thermodynamic limit, the Calogero model
has indeed a LLL-anyon/exclusion like statistics [45] acoding to (67) and (68),

6The same conclusion would be reached starting form the Calog ero-Sutherland model and taking the correspond-
ing thermodynamic limit, i.e. the radius of the con ning cir  cle going to in nity.
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interpolating, as it should, from a free bosonic 1d gas at = 0 to a free fermionic
ldgasat = 1.

It follows that the 2d LLL-anyon and 1d Calogero models, whit seem a priori
unrelated, do obey the same type of statistics. This is not abmcidence. Looking at
their harmonic N -body spectrum (37) and (76), one realizes that, up to an irlevant
zero-point energy, the latter is theB ! 0 limit of the former. This remains true in
the thermodynamic limit ! ! 0. So, not only (66) and (80) are of the same type,
but also, whenB ! 0, (66) has to become (80). It follows that, necessarily, the
1-body densities of states . () and o( ) satisfy limg, o . ()= o), i.e.

_eBV eB, L
iz U )T Py (62)
a relation which has to be understood as arising in the therndgnamic limit ! ! 0.

To arrive at (82), one could as well consider directly the 1dmy harmonic LLL
spectrum (32) and harmonic 1d spectrum (77)

E=(!y lo(li+1)+ I E=!(h+%) (83)

They are such that the latter is the vanishingB limit of the former, so it is the case
for the corresponding 1-body partition functions. Taking hen’ the thermodynamic
limit ! ! 0O, i.e. (46), implies the relation ling, ¢Z, . = Zo, Where Z Is,
as above, the LLL partition function and Z, is the free partition function in one
dimension. Consequently for the densities of states (theverse Laplace transforms)
the relation (82) follows. This result has its roots in the derent energy gaps of the
spectra (83) at small! : in the harmonic LLL case, the gap behaves like?=(2! .),
whereas, in the 1d harmonic case, the gaplis

The relation (82) could also have been understood from thellbdy eigenstates
themselves. In the limitB ! 0, the LLL induced harmonic analytic eigenstates are,

from (32), S

!|i+1
[ !

There is only one parametet left so that the states in (84) can be put in one-to-one
correspondence with the Hermite polynomials (77) via the Bgmann transform
Z
P—— ! 1 Py o p_
Pzl =1 dx, e HOF zxn 2R (T TX ) (85)
l |
From (85) one can infer [47] that theN -body harmonic anyon eigenstates (38) are
a coherent state representation of thé&l -body harmonic Calogero eigenstates.
From all these considerations (thermodynamics, eigenses,...) it follows that
the vanishing magnetic eld limit® of the LLL-anyon model is the Calogero model
itself. It seems paradoxical to consider such a limit in the ILL which assumes a

(L b (84)

"The order of limits is crucial here: rst the limit B ! 0, then the thermodynamic limit ! ! O.

8Since one has ended up by taking the limit B ! 0, one could have avoided right from the beginning to introdu ce
a B eld, and started directly from the harmonic N -body anyon model. What has been done above by taking the
limit B ! 0 is nothing but to project the harmonic anyon model on the LLL induced harmonic subspace (84) (the
B eld and its LLL should still be invoked to justify the select  ion of the LLL quantum numbers in the 2d harmonic
basis) and to recognize that the projected harmonic anyon mo del is the harmonic Calogero model. This relation
remains true in the thermodynamic limit ! ! 0.
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priori a strong magnetic eld. Still, doing so, one has dimesionally reduced the 2d
anyon model to the 1d Calogero model. This dimensional redian has a simple
geometrical interpretation. The LLL induced harmonic staés (84) are localized in
the vicinity of circles of radiusl;=! . In the thermodynamic limit, one hasl; ' 1 with
;! = k2=2 kept xed. It follows that the corresponding 1d Hermite poynomialsH,,
which become in this limit plane waves of momenturk;, have a radius of localization
diverging like k?=! 2. The dimensional reduction which has taken place consists i
going at in nity on the edge of the plane: in the thermodynant limit, the Calogero
model can be viewed as the edge projection of the anyon model.

The LLL anyon thermodynamics, or, equivalently, the Haldag/
exclusion thermodynamics, and the Calogero thermodynansias well, have been the
subject of an intense activity since the mid-nineties. Let simention their relevance
in more abstract contexts, such as conformal eld theorieg8]. On the experimental
side, FQHE edge currents can be modelled by quasiparticlegtwfractional statis-
tics, which in turn might a ect their transport properties such as the current shot
noise [49, 42].

4 Minimal Di erence Partitions and Trees

Up to now one has been concerned with quantum mechanical mtglee ned by
a microscopic quantum Hamiltonian. Both the LLL anyon and Ckgero models
have been shown to have a thermodynamics controlled by (67hd (68). Let us
leave quantum mechanics and address a pure combinatorialoptem, the minimal
di erence partition problem [50]. Consider the number (E; N ) of partitions of an
integer E into N integer parts where each part di ers from the next by at least
an integer p and the smallest part is |. Usual integer partitions correspond to
p=0 and | =1, whereas restricted partitions, where the parts have to & di erent,
correspond top=1and | = 1.

Figure 5: A minimal di erence partition con guration, or Yo ung diagram. The columrp_,heights are
such that (I li+s1) pfori=1;2:::;N 1andl; |. Their total heightis E = iN:1 li. Wh
is the width of the Young diagram at height h, i.e. the number of columns whose heights h.
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It is known that
X xIN+pN(N  1)=2

c (E;N)XE:(l X) (1 x2)::(1 xN)

(86)
, . P, .

The (E;N) generating functionZ(x;z) = g, (E;N )xEzN factorizes whenp =
Oorp=1
¥ 1 ¥ _

——— p=1; Z(xz)= (@1+x"'z)  (87)
1 xi+iz ._
i=0 i=0
In terms of bosons or fermions, (87) is the grand partition fuction for a bosonic or
fermionic gas with fugacityz and, denotingx = e , temperature T = 1= where

p=0; Z(x;2)=

b3 X
E = ni(l+i) N = n; (88)
i=0 i=0
with n; =0;1;2;:::in the Bose casefd=0) and n; =0;1 in the Fermi case p = 1).
Equivalently

E = l; (89)
i=1
with | 13 |, 0 Iy (Bose)orl Ip<ly<::i:<ly (Fermi).
Whenpis an integer 2, (86) can be regarded as thH -body partition function
of an interacting bosonic gas with theN -body spectrum

X
E = i+ pN(N 2)=2; | 1y |, =i |y (90)
i=1
Clearly, (90) goes beyond the Fermi poinp = 1 and describes some kind of "super-
fermions”. In contrast to the Bose and Fermi cases, a factaation such as (87) is
not possible, due to the interacting nature of (90). One hasistead the functional
relation

Z(x;z) = Z(x;xz) + x'zZ(x;xPz) (91)
which embodies the combinatorial identity
(E;N)= o E pM;N (92)

2

where o(E;N) stands for the usual partition counting.

One could push [51] this analysis further t@ real positive. Whenp 2 [0; 1]
and | = 1, one would obtain a partition problem interpolating between the usual
(bosonic) one and the restricted (fermionic) one. It is mafest that, if p is replaced
by , the spectrum (90) coincides, under a rescaling and up to amelevant zero-
point energy, with the N-body quantum spectrum (76) of the harmonic Calogero
model. In a partition problem, one is interested in the larg&e and N asymptotic
behavior of (E;N), which corresgonds to the regimex! 1,i.e. ! 0. Consider
the cluster expansion IrZ (x; z) = Ll bz". In the limit ! O one obtains

Q:Ee " N(l(l @
n? k

k=1

) b= le! (93)
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The limit ! 0 should not be confused with the thermodynamic limit in quatum
systems. There is no thermodynamic limit prescription likg46). Still, using (49)
(with ! replaced byl) and taking care of the unwanted %n factor in (93), one
obtains, provided thatze ' < 1,
Z 1
InZ(;z)= Iny(ze )d (94)
|
with
y ze ytP=1 (95)
This is again of the form (67) and (68), the statistical pararater being replaced
by the minimal di erence partition parameter p, and the 1-body density of states
being the Heaviside function ( ) = ( |). The minimal di erence partition combi-
natorics is equivalently described, in the small limit, by a gas of particles obeying
exclusion statistics with a uniform density of statel
This correspondence happens to be useful technically: (9dihd (95) are the
building blocks of the minigmal di erence partition asymptdics. The average integer
E= @nZ( ;z):l@ = Il nd and the average number of integer parth =
z@nZzZ(;z)=@z= Il nd , are both given in terms ofn = z@ny=@zthe mean
occupation number at "part* and fugacity z, which satis es
n 1

ze :(1+(1 DR TR with n p (96)

One obtains 1 1
E IN=ZInZ(;z) N==lIny(ze ') (97)

so that the entropy*® S InZ(;z)+ E (Inz)N rewrites as

s=2 E IN gNZ NInL e V) (98)
with
Z, .«
E IN Pnz= 2 W4 (99)

2 I

Inverting (99) gives as a function ofE and N so that the entropy S in (98) becomes
a function of E and N only. Doing so, one has a de nite information [51] on the
asymptgiic behavior of (E;N) e>EN) when E and N are large, and also, of

(E) = ﬁ,zl (E;N) when E is large. One obtains a generalization of the Hardy-
Ramajunan asymptotics [52] to the minimal di erence partiton problem. One can
also obtain [53] the average limit shape of the Young diagraarassociated with the
minimal di erence partition problem, generalizing the usal partition limit shape
[54]. The limit shape at a part of heighth depends solely on the statistical function
y evaluated at = handatz=1

Wh,=Inye M) (100)

Rl
where scalesas’E = ; Iny(e )d.

9There is no microscopic quantum Hamiltonian leading to (94)  and (95).
10The simple expression in (97) for N is possible because of the constant density of states.
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So farp being a positive integer has insured that thé\ -body spectrum in (90)
is well de ned. However,y in (95) is still meaningful whenp is a negative integer.
It is the (1 p)-ary tree generating function, so that the coe cient at order n of its
expansion in powers otze  as given in (69) (with replaced byp) is the number
of ways to build a (1 p)-ary tree with n nodes. For example, ap= 1,y generates
the Catalan numbers associated with binary trees.

Consider, as a toy model [55], the factorized (1p)-ary tree generating function

¥ .
Z(x;z)=  y(zx*") (101)

i=0

wherey satis es (101) with = 1+ i. (101) narrows down to (87) wherp = 0 (Bose
case). Its combinatorial interpretation is that (E;N) deduced from (101) counts
the number of usual partitions of an integelE into N integer parts bigger or equal
to |, with an additional degeneracy stemming from the (1 p)-tree arborescence
when, in a given partition, a part occursn times. This enlarged degeneracy goes
beyond the Bose point to de ne some kind of "superbosons".

One can analytically continuep to the whole negative real axis. In the large
E and N Ilimit, i.e. smaller and smaller, one encounters a maximal temperature
beyond which it is not possible to heat the system. Indeed,dm (95) it follows that
y(zx'*1) in (101) obeys toy ze (*Dy! P =1 which is well de ned only if [39]

ze'<(1 pP i pP<1 (102)
When z = 1, it de nes a dimensionless "Hagedorn temperature”

B |
(1 pIn@ p+ pin( p

just below which E and N become large so that the asymptotic of (E; N) can be
addressed.

T

(103)

5 Conclusion

In two dimensions intermediate anyonic statistics interplating from Bose to Fermi
statistics are allowed. Their de nition does not involve agithing else than the usual
concept at the basis of quantum statistics, namely free pades endowed with par-
ticular boundary exchange conditions on theilN-body wavefunctions. It happens
that these boundary conditions have a much richer structurén two dimensions
than in three and higher dimensions. This in turn can be undstood in terms of the
topology of paths in theN -particle con guration space, where non trivial braiding
occurs in two dimensions, and not in higher dimensions. A uxharge composite
picture emerges to encode the braiding statistics in physicterms, via topological
Aharonov-Bohm interactions and singular magnetic elds.

The anyon model as such is certainly fascinating as far as guiam mechanics
is concerned, but it remains an abstract construction whossmplexity is daunting.
However, when projected onto the LLL of an external magnetield, the model
becomes tractable and, even more, solvable. The LLL set up détearly adapted
to the QHE and to the FQHE physics. Haldane/exclusion statiscs, which can be
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obtained as a LLL-anyon mean- eld picture in the screeningegime, leads to LLL-
anyon thermodynamics.

It would certainly be rewarding if LLL anyons could be relevat experimentally,
for example by uncovering some experimental hints at FQHE lihg factors of the ex-
istence of quasipatrticles with anyonic/
exclusion statistics. Fractional charges have already heeseen in shot noise FQHE
experiments [56], but the nontrivial statistical nature ofthe charge carriers in FQHE
edge currents has so far remained elusive in experiments g¥hirely mainly on
Aharonov-Bohm interferometry [28]. Note also a recent pragsal for the possible
experimental tracking of abelian and nonabelian anyonic atistics in Mach-Zehnder
interferometers [57].

Finally, on the theoretical side, physical interactions, agether with topological
anyonic interactions, should also be taken into account inrder to produce more
realistic models.
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