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Abstract. Intermediate statistics interpolating from Bose statisti cs to Fermi
statistics are allowed in two dimensions. This is due to the particular topol-
ogy of the two dimensional con�guration space of identical particles, leading
to non trivial braiding of particles around each other. One arrives at quantum
many-body states with a multivalued phase factor, which encodes the anyonic
nature of particle windings. Bosons and fermions appear as two limiting cases.
Gauging away the phase leads to the so-called anyon model, where the charge
of each particle interacts "�a la Aharonov-Bohm" with the u xes carried by the
other particles. The multivaluedness of the wave function has been traded o� for
topological interactions between ordinary particles. An alternative Lagrangian
formulation uses a topological Chern-Simons term in 2+1 dimensions. Taking
into account the short distance repulsion between particles leads to an Hamil-
tonian well de�ned in perturbation theory, where all pertur bative divergences
have disappeared. Together with numerical and semi-classical studies, pertur-
bation theory is a basic analytical tool at disposal to study the model, since
�nding the exact N -body spectrum seems out of reach (except in the 2-body
case which is solvable, or for particular classes ofN -body eigenstates which
generalize some 2-body eigenstates). However, a simpli�cation arises when the
anyons are coupled to an external homogeneous magnetic �eld. In the case of
a strong �eld, by projecting the system on its lowest Landau level (LLL, thus
the LLL-anyon model), the anyon model becomes solvable, i.e. the classes of ex-
act eigenstates alluded to above provide for a complete interpolation from the
LLL-Bose spectrum to the LLL-Fermi spectrum. Being a solvable model allows
for an explicit knowledge of the equation of state and of the mean occupation
number in the LLL, which do indeed interpolate from the Bose to the Fermi
cases. It also provides for a combinatorial interpretationof LLL-anyon braiding
statistics in terms of occupation of single particle states. The LLL-anyon model
might also be relevant experimentally: a gas of electrons ina strong magnetic
�eld is known to exhibit a quantized Hall conductance, leading to the integer
and fractional quantum Hall e�ects. Haldane/exclusion statistics, introduced to
describe FQHE edge excitations, is a priori di�erent from anyon statistics, since
it is not de�ned by braiding considerations, but rather by co unting arguments
in the space of available states. However, it has been shown to lead to the same
kind of thermodynamics as the LLL-anyon thermodynamics (or, in other words,
the LLL-anyon model is a microscopic quantum mechanical realization of Hal-
dane's statistics). The one dimensional Calogero model is also shown to have
the same kind of thermodynamics as the LLL-anyons thermodynamics. This is
not a coincidence: the LLL-anyon model and the Calogero model are intimately
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related, the latter being a particular limit of the former. F inally, on the purely
combinatorial side, the minimal di�erence partition probl em -partition of in-
tegers with minimal di�erence constraints on their parts- can also be mapped
on an abstract exclusion statistics model with a constant one-body density of
states, which is neither the LLL-anyon model nor the Calogero model.

1 Introduction

Quantum statistics, which is concerned with quantum many-body wavefunctions of
identical particles, has a long history going back to Bose and Fermi. The concept
of statistics originates at the classical level in the Gibbsparadox, which is solved
by means of the indiscernability postulate for identical particles. At the quantum
level, the usual reasoning shows that only two types of statistics can exist, bosonic
or fermionic. Indeed, since

� interchanging the positions of two identical particles can only
amount to multiplying their 2-body wavefunction by a phase factor,

� a double exchange puts back the particles at their original position,

� and one usually insists on the univaluedness of the wavefunction,

this phase factor can be only 1 (boson) or -1 (fermion).
However, non trivial phase factor should be possible, sincewavefunctions are

anyway de�ned up to a phase. The con�guration space of two, ormore generally,N
identical particles has to be de�ned cautiously [1]: denoting by C the con�guration
space of a single particle (C = R2 for particles in the two-dimensional plane,d = 2),
the con�guration space ofN particles should be of the typeCN =SN , whereC � C �
::: � C = CN and SN is the permutation group forN identical particles. Quotienting
by SN takes into account the identity of the particles which implies that one cannot
distinguish between two con�gurations related by an operation of the permutation
group. One should also subtract fromCN the diagonal of the con�guration spaceDN ,
i.e. any con�gurations where two or more particles coincide. The reason is, having
in mind Fermi statistics, that the Pauli exclusion principle should be enforced in
some way. A more precise argument is to have a valid classi�cation of paths in the
N -particle con�guration space, which would be ambiguous if two or more particles
coinciding at some time is allowed (since they are identical, did they cross each
other, or did they scatter o� each other ?). It follows that the con�guration space
of N identical particles should be

~CN =
CN � DN

SN
(1)

Note that on this con�guration space, a fermionic wavefunction is multivalued
(two values 1 and -1), so there is no reason not to allow more general multivaluedness.
Here come some topological arguments, which allow to distinguish betweend = 2
and d > 2, and, as we will see later, which can be related to spin considerations.
In 2 dimensions,CN is multiply connected and its topology is non trivial: it is
not possible to shrink a path of a particle encircling another particle, due to the
topological obstruction materialized by the latter. It follows that ~CN is multiply
connected. This is not the case in dimensions higher than 2, where CN is simply
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connected, meaning that all paths made by a particle can be continuously deformed
into each other, i.e. one cannot distinguish the interior from the exterior of a closed
path of a particle around other particles.

These arguments imply that the equivalent classes of paths (�rst homotopy
group) in ~CN are, whend = 2, in one-to-one correspondence with the elements of
the braid group

� 1( ~CN ) = BN (2)

whereas, whend > 2, they are in one-to-one correspondence with the elements of
the permutation group

� 1( ~CN ) = SN (3)

The braid group generators� i interchange the position of particlei with particle
i + 1. This operation can be made in an anti-clockwise manner (� i ) or a clockwise
manner (� � 1

i ). Each braiding ofN particles consists of a sequence of interchanges of
pairs of neighboring particles via the� i 's and the � � 1

i 's, with i = 1; 2; :::; N � 1. The
braid group relations list the equivalent braiding, i.e. braiding that can be continu-
ously deformed one into the other without encountering a topological obstruction

� i � i +1 � i = � i +1 � i � i +1 ; � i � j = � j � i when ji � j j > 2 (4)

Figure 1: The braid group generators and their de�ning relations.

Saying that d = 2 is di�erent from d > 2 is nothing but recognizing that
� i 6= � � 1

i when d = 2, whereas � i = � � 1
i when d > 2 (� i can be continuously
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deformed into� � 1
i when particlesi and i +1 are not stuck in a plane). It follows that

when d > 2, the braid generators� i 's de�ned by (4) with the additional constraint
� i = � � 1

i are the permutation group generators.
Note also that the d = 2 paradigm, � i 6= � � 1

i , hints at an orientation of the
plane, a hallmark of the presence of some sort of magnetic �eld. This point will
become apparent in the Aharonov-Bohm formulation of the anyon model.

The fact that CN is multiply connected whend = 2 and not when d > 2 can also
be related to the rotation groupO(d), and thus to some spin-statistics considerations
[2]. When d > 2, the rotation group is doubly connected, [�1(O(d)) = Z2], its
universal covering, for example whend = 3, is SU(2), which allows for either integer
or half integer angular momentum states, that is to say either single valued or double
valued representations of the rotation group. On the other hand, whend = 2, the
rotation group is abelian and in�nitely connected [� 1(O(2)) = Z ], its universal
covering is the real line, that is to say arbitrary angular momenta are possible,
and therefore multivalued representations. One can see here a hint about the spin-
statistics connection, where statistics and spin are trivial (Bose-Fermi statistics,
integer-half integer spin) whend > 2, and not whend = 2.

Let us consider the simple one-dimensional irreducible representation of the
braid group, which amounts to a common phase factor exp(� i�� ) for each gen-
erator � (and thus exp(i�� ) to � � 1). It means that a non trivial phase has been
associated with the winding of particlei around particle i + 1. Higher dimensional
representations (quantum vector states) are possible -onespeaks of non abelian
anyons, in that case not only a non trivial phase materializes during a winding,
but also the direction of the vector state in the Hilbert space is a�ected- but they
will not be discussed here (even though they might play a rolein the discussion of
certain FQHE fractions [3], and, in a quite di�erent perspective, in the de�nition of
topologically protected fault-tolerant quantum computers [4]).

Clearly, when d > 2, � i = � � 1
i implies � = 0 or � = 1, i.e. Bose or Fermi

statistics (an interchange leaves the wavefunction unchanged or a�ected by a minus
sign).

From now on let us concentrate ond = 2 and denote the free many-body
wavefunction of N identical particles by  0(~r1; ~r2; :::; ~rN ). Indeed, statistics should
be de�ned for free particles with Hamiltonian

H 0
N =

NX

i =1

~p2
i

2m
(5)

and special boundary conditions on the wavefunction, as in the Bose case (symmetric
boundary condition) and the Fermi case (antisymmetric boundary condition). As
already said, 0(~r1; ~r2; :::; ~rN ) is a�ected by a phase exp(� i�� ) when particlesi and
i +1 are interchanged: one can encode this non trivial exchange property by de�ning

 0(~r1; ~r2; :::; ~rN ) = exp( � i�
X

i<j

� ij ) (~r1; ~r2; :::; ~rN ) (6)

where  (~r1; ~r2; :::; ~rN ) is a regular wavefunction, say bosonic by convention, and� ij

is the angle between the vector~rj � ~ri � ~rij and a �xed direction in the plane. Indeed
interchanging i with j amounts to � ij ! � ij � � , which altogether with the bosonic
symmetry of  (~r1; ~r2; :::; ~rN ), leads to

 0(~r1; ~r2; :::~rj ; :::~ri ; :::; ~rN ) = exp( � i�� ) 0(~r1; ~r2; :::~ri ; :::~rj ; :::; ~rN ) (7)
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By the above bosonic convention for (~r1; ~r2; :::; ~rN ), the statistical parameter
� even (odd) integer corresponds to Bose (Fermi) statistics.It is de�ned modulo 2,
since two quanta of ux can always be gauged away by a regular gauge transfor-
mation while preserving the symmetry of the wavefunctions in the Bose or Fermi
systems. Indeed, (6) can be interpreted as a gauge transformation. Let us compute
the resulting Hamiltonian HN acting on  (~r1; ~r2; :::; ~rN )

HN =
NX

i =1

1
2m

(~pi � ~A(~ri ))2 (8)

where

~A(~ri ) = � ~@i (
X

k<l

� kl ) = �
X

j;j 6= i

~k ^ ~rij

r 2
ij

(9)

is the statistical potential vector associated with the multivalued phase (the gauge
parameter). The free multivalued wavefunction has been
traded o� for a regular bosonic wavefunction with topological singular magnetic
interactions. The statistical potential vector (9) can be viewed as the Aharonov-
Bohm (A-B) potential vector that particle i carrying a chargee would feel due to
the ux tube � carried by the other particles, with e and � related to the statisti-
cal parameter� by � = e�= (2� ) = �=� 0 (� 0 = 2�=e is the ux quantum in units
~ = 1). The resulting composite charge-ux picture is known under the name of
anyon model [5] since it describes particles with "any" (any-on) statistics.

Figure 2: The two equivalent formulations of anyon statistics in terms, on the left, of a punctured
plane and, on the right, of usual bosonic particles interacting via topological A-B interactions.
The loop of particle i around particle j cannot be continuously deformed to nothing due to the
topological obstruction materialized by the puncture at th e location of particle j .

Computing the �eld strength one obtains

�
e

~@i ^
X

j;j 6= i

~k ^ ~rij

r 2
ij

=
2��

e

X

j;j 6= i

� (~rij ) (10)
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meaning that each particle carries an in�nite singular magnetic �eld with ux � =
2��=e . The gauge transformation is singular since it does not preserve the �eld
strength (which vanishes in the multivalued gauge and is singular in the regular
gauge). This is due to the singular behavior of the gauge parameter � ij when particle
i come close to particlej , thus the singular Dirac� (~rij ) function in the �eld strength.

It is not surprising that topological A-B interactions are at the heart of quan-
tum statistics. In its original form, the A-B e�ect [6] consists in the phase shift in
electron interference due to the electromagnetic �eld, determined by the phase factor
exp[(ie=~c)

R
 A � dx� ] along a closed curve passing through the beam along which

the �eld strength vanishes. This e�ect1 is counter-intuitive to the usual understand-
ing that the inuence of a classical electromagnetic �eld ona charged particle can
only occur through the local action of the �eld strength. In the context of quantum
statistics, it means that non trivial statistics arise through topological "in�nite"-
distance interactions where no classical forces are present, as it should and as it
is the case for Bose and Fermi statistics. Finally, singularmagnetic �elds give an
orientation to the plane, which, as already said, shows up in� i 6= � � 1

i .
All this can be equivalently restated in a Lagrange formulation which describes

again the system in topological terms, i.e. free particles minimally coupled to a
potential vector whose dynamics is not Coulomb-like (Maxwell Lagrangian) but
rather Chern-Simons [9]

LN =
NX

i =1

(
1
2

m~v2
i + e( ~A(~ri )~vi � A0(~ri ))) �

�
2

� ���

Z
d2~rA � @� A � (11)

with � ��� the completely antisymmetric tensor (the metric is (+; � ; � );
x � = ( t;~r ) = ( t; x; y ); A � = ( Ao; Ax ; Ay); � 012 = � 012 = +1). Solving the Euler-
Lagrange equations, in particular

@� �L N

� (@� A0)
=

�L N

�A 0
! � ~@̂ ~A(~r) = e

NX

j =1

� (~r � ~rj ) (12)

leads to a magnetic �eld proportional to the density of particles in accordance with
(10). Solving this last equation for ~A(~r) in the Coulomb gauge gives

~A(~r) =
e

2��

NX

j =1

~k ^ (~r � ~rj )
(~r � ~rj )2

(13)

in accordance with the A-B potential vector (9). Here again there is no Lorentz force,
the potential vector is a pure gauge, the Chern-Simons term is metric independent,
and the �eld strength is directly related to the matter current.

Coming back to the Hamiltonian formulation (8), one might ask how the ex-
clusion of the diagonal of the con�guration space materializes in the Hamiltonian
formulation. One way to look at it is perturbation theory [10, 11]. Let us simplify
the problem by considering the standard A-B problem, i.e. a charged particle in the
plane coupled to a ux tube at the origin with the Hamiltonian

H =
1

2m
(~p� �

~k ^ ~r
r 2

)2 (14)

1The e�ect was �rst experimentally con�rmed by R. G. Chambers [7], then by A. Tonomura [8].
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Let us see what happens close to Bose statistics when� ' 0 (by periodicity �
can always been chosen in [� 1=2; +1=2], an interval of length 1, since in the one-
body case one quantum of ux can always be gauged away via a regular gauge
transformation). The A-B spectrum [6] is given by the Besselfunctions

 (~r) = eil� Jj l � � j(kr ) E =
k2

2m
(15)

with wavefunctions vanishing close to the originr ! 0 asJj l � � j(kr ) ' r j l � � j. When
the angular momentum l 6= 0, this is the only possible locally square-integrable
function. However, whenl = 0, one could have as wellJ�j � j(kr ) as a solution, since
it is still locally square-integrable even though it diverges at the origin asr �j � j. In
principle, the general solution in thel = 0 sector should be a linear combination of
Jj � j(kr ) and J�j � j(kr ), introducing an additional scale in the coe�cient of the linear
combination [12]. Restricting the space of solutions as in (15), i.e. wavefunctions
vanishing at the origin, means that a short-range repulsiveprescription has been
imposed on the behavior of the wavefunctions when the particle comes close to
the ux tube. One can give a more precise formulation of this fact by trying to
compute in perturbation theory the spectrum (15). Expanding the square in the
Hamiltonian (14), one �nds that the � 2=r2 term, which is as singular as the kinetic
term, is divergent at second order in perturbation theory inthe l = 0 sector. It
follows that perturbation theory is not well de�ned in the problem as de�ned by the
Hamiltonian (14). A renormalization has to be implemented:one realizes that by
adding the counterterm� j� j� (~r) to (14), i.e. by considering

H =
1

2m
(~p� �

~k ^ ~r
r 2

)2 +
2� j� j

m
� (~r) (16)

the perturbative divergences due to the� 2=r2 term are exactly cancelled by those
arising from the � j� j� (~r) term at all orders in perturbation theory, giving back the
spectrum (15). Physically, this repulsive� contact term means that the particle
is prevented from penetrating the core of the ux tube where the �eld strength
is in�nite, thus the (at least) r j � j behavior whenr ! 0. Note that this has been
achieved without introducing any additional scale in the problem.

Clearly, in the N -body A-B anyon formulation of the model, the corresponding
renormalized Hamiltonian should read

HN =
NX

i =1

1
2m

(~pi � �
X

j 6= i

~k ^ ~rij

r 2
ij

)2 +
2� j� j

m

X

i 6= j

� (~rij ) (17)

realizing the quantum mechanical exclusion of the diagonalof the con�guration
space in terms of contact repulsive interaction between particles. Note that the term
� j� j

P
i 6= j � (~rij ) in (17) can also be viewed [11] as the Pauli spin coupling of the spin

of the particles to the singular magnetic �eld (10) associated to the ux tubes.
The anyon model de�ned in (17) is properly de�ned as far as short-distance con-

siderations are concerned. It is the interacting formulation for regular wavefunctions
of the free particles formulation for multivalued wavefunctions. Both Hamiltonians
HN andH 0

N are equivalent, the former being more familiar in terms of usual quantum
mechanics, the latter more relevant to study braiding and winding properties.
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The anyon model has been the subject of numerous studies in the eighties and
the nineties [13], some of them analytical, starting with the 2-body case which is
solvable since its relative 2-body problem is the usual A-B problem (14) with an
even (Bose) angular momentuml. The exact solution [1, 5] for the relative 2-body
problem is given by (15),l being an even integer, therefore when� is odd, l � � is
odd, corresponding to Fermi statistics (the periodicity� ! � � 2p is manifest in
the shift l ! l � � ). These studies were followed by the 3-body [14] and then the
N -body problem [15]. Statistical mechanics was also considered (second virial coe�-
cient [16, 17], third virial coe�cient [18]). However, it soon became apparent that a
completeN -body spectrum was out of reach, to the exception of particular classes of
exact eigenstates generalizing the 2-body eigenstates. Numerical [19] as well as semi-
classical [20] studies were performed giving indications on the low energyN -body
spectrum. A systematic study of the model was achieved at �rst [21] and at second
order [22] in perturbation theory (at second order the complexity of the model shows
up clearly). Numerical studies [23], taking some input fromthe perturbative results,
were performed for the 3rd and 4th virial coe�cients. Last but not least, on the
experimental side, Laughlin quasiparticles [24] were put forward as the elementary
excitations of highly-correlated fractional quantum Hallelectron uids [25]. They
were supposed to carry a fractional charge and to obey anyon statistics [26], a fact
con�rmed by Berry phase calculations, at least for quasiholes [27] (for quasiparticles
the situation is less clear). The quasiparticles can propagate quantum-coherently in
chiral edge channels, and constructively or destructivelyinterfere. Unlike electrons,
the interference condition for Laughlin quasiparticles has a non-vanishing statistical
contribution which might be observed experimentally [28].

Some kind of simpli�cation had to be made to render the model more tractable,
and possibly solvable, at least in a certain sector. One realized that this was the case
if one considered, in addition to the singular statistical magnetic �eld, an external
homogeneous magnetic �eld perpendicular to the plane, to which the charge of the
anyons couple. In the case of a strong magnetic �eld, by projecting the system of
anyons coupled to the magnetic �eld in its LLL, the model becomes solvable meaning
that one can �nd a class ofN -body eigenstates which interpolates continuously from
the LLL-Bose to the LLL-Fermi eigenstates basis: this is theLLL-anyon model [29].

2 The LLL-anyon model

From now on, let us set the mass of the particlesm = 1 and choose the statistical
parameter � 2 [� 2; 0]. It is understood that all the results below are obtained for �
in this interval, but they can be periodically continued to the whole real axis. Before
introducing an external magnetic �eld, let us come back to the anyon Hamiltonian
(17) and take advantage of wavefunctions vanishing at leastas r � �

ij when r ij ! 0
(exclusion of the diagonal of the con�guration space in the quantum mechanical
formulation) by encoding this short distance behavior in the N -body bosonic wave
function [10]

 (~r1; ~r2; :::; ~rN ) =
Y

i<j

r � �
ij

~ (~r1; ~r2; :::; ~rN ) (18)

~ (~r1; ~r2; :::; ~rN ) is regular but does not have to vanish at coinciding points.From HN

in (17) one can compute the new Hamiltonian ~HN acting on
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~ (~r1; ~r2; :::; ~rN ). Since HN is itself obtained from the free HamiltonianH 0
N in (5)

via the singular gauge transformation (6), it is more transparent to start directly
from the free formulation. In complex notation (the free Hamiltonian is H 0

N =
� 2

P N
i =1 @�@i ) the wavefunction rede�nitions (6) and (18) combined take the sim-

ple form

 0(z1; z2; :::; zN ; �z1; �z2; :::; �zN ) =
Y

i<j

z� �
ij

~ (z1; z2; :::; zN ; �z1; �z2; :::; �zN ) (19)

The Jastrow-like prefactor
Q

i<j z� �
ij in (19) encodes in the wavefunction the essence

of anyon statistics: topological braiding phase and short-distance contact exclusion
behavior. It is immediate that ~HN rewrites as

~HN = � 2
NX

i =1

@i
�@i + 2�

X

i<j

1
zi � zj

( �@i � �@j ) (20)

It is a non-Hermitian Hamiltonian (the transformation (19) is non-
unitary), but it has a simple form, linear in � and well de�ned in perturbation
theory (it is perturbatively divergence free). Any analytic wavefunction of thezi 's is
a N -body eigenstate of~HN , and therefore of theN -anyon Hamiltonian (17) taking
into account (18). Analytical eigenstates are known to livein the LLL of a magnetic
�eld, if such a �eld were present. Let us couple the electric charge of each anyon
to an external magnetic �eld B perpendicular to the plane such that by convention
eB > 0 and let us denote by! c = eB=2 half its cyclotron frequency. One now starts
from the Landau Hamiltonian

H 0
N = � 2

X

i

(@i �
! c

2
�zi )( �@i +

! c

2
zi ) (21)

In a magnetic �eld, the 1-body eigenstates have a long-distance Landau exponen-
tial behavior exp(� 1

2 ! czi �zi ). Let us also encode this behavior in the wavefunction
rede�nition (19) so that it becomes

 0(z1; z2; :::; zN ; �z1; �z2; :::; �zN ) =

Y

i<j

z� �
ij exp(�

1
2

! c

NX

i =1

zi �zi ) ~ (z1; z2; :::; zN ; �z1; �z2; :::; �zN ) (22)

One obtains

~HN = � 2
NX

i =1

(@i
�@i � ! c �zi

�@i ) + 2 �
X

i<j

1
zi � zj

( �@i � �@j ) + N! c (23)

where the trivial constant energy shift from the Pauli coupling to the magnetic �eld
has been ignored. As announced,~HN acts trivially on N -body eigenstates made of
symmetrized products of analytic 1-body LLL eigenstates

s
! l i +1

c

�l i !
zl i

i ; l i � 0; E = ! c (24)
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(in (24) the Landau exponential term is missing since it has already been taken into
account in (22)). So, up to an overall normalization,

~ (z1; z2; :::; zN ; �z1; �z2; :::; �zN ) = Sym
NY

i =1

zl i
i ; 0 � l1 � l2 � ::: � lN (25)

is an eigenstate with a degenerateN -body energy,EN = N! c, a mere reection of
the fact that there are N particles in the LLL. From (22) and (25) one �nally gets

 0(z1; z2; :::; zN ; �z1; �z2; :::; �zN ) =
Y

i<j

z� �
ij exp(�

1
2

! c

NX

i =1

zi �zi )Sym
NY

i =1

zl i
i ;

0 � l1 � l2 � ::: � lN (26)

The basis (26) continuously interpolates when� = 0 ! � 1 from the complete
LLL-Bose N -body basis to the complete LLL-FermiN -body basis. Indeed, when
� = � 1,

 0(z1; z2; :::; zN ; �z1; �z2; :::; �zN ) = exp( �
1
2

! c

NX

i =1

zi �zi )
Y

i<j

zij Sym
NY

i =1

zl i
i ;

0 � l1 � l2 � ::: � lN (27)

is equivalent to

 0(z1; z2; :::; zN ; �z1; �z2; :::; �zN ) = exp( �
1
2

! c

NX

i =1

zi �zi )Antisym
NY

i =1

zl0
i

i ;

0 < l 0
1 < l 0

2 < ::: < l 0
N (28)

i.e. the LLL fermionic basis. One has therefore obtained a complete LLL-Bose !
LLL-Fermi interpolating basis which allows, in principle,for a complete knowledge
of the LLL-anyon system with statistics intermediate between Bose and Fermi statis-
tics.

One could ask about going beyond the Fermi point� = � 1 up to the Bose point
� = � 2. This question is related to the validity of the LLL projection, since ignoring
higher Landau levels amounts to assuming that excited non LLL states above theN -
body LLL ground state have a non vanishing gap. Considerations around the Fermi
point, as well as numerical and semiclassical analysis, support [29] this scheme as
long as� does not come close to� 2. However, when� ! � 2, known linear as well
as unknown nonlinear non LLL eigenstates do join the LLL ground state [31]. Said
di�erently, the LLL-anyon basis (26) does not constitute a complete LLL-Bose basis
when � ! � 2, i.e. someN -body LLL bosonic quantum numbers are missing at this
point. We will come back to this issue later.

One has not seen yet any� dependence in theN -body energy, a situation
already encountered in the 1-body A-B problem, where the free continuous energy
spectrum (15) is� -independent. This is due to the fact that a magnetic �eld does not
con�ne particles: classical orbits are circular cyclotronorbits, but their centers, due
to translation invariance, are located anywhere in the plane. Translation invariance
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Figure 3: Linear and non linear non LLL eigenstates merge in the LLL ground state at the bosonic
values of � .

in turn gives, in quantum mechanics, a Landau spectrum whichis l i independent,
and therefore in�nitely degenerate2. The degeneracy factor scales as the in�nite
surfaceV of the 2d sample: it is the ux of the magnetic �eld counted in units of
the ux quantum � 0 = 2�=e (in units ~ = 1)

NL =
V B
� 0

(29)

Statistical interactions being topological interactions, one does not expect, in the
in�nite plane limit, any e�ect on the N -body energies. To see such an e�ect, one
has to introduce a long-distance con�nement, like putting the particles in a box.
Let us rather introduce [30] a more convenient harmonic wellcon�nement where the
particles are trapped, so that the Landau Hamiltonian (21) becomes

H 0
N = � 2

NX

i =1

(@i �
eB
4

�zi )( �@i +
eB
4

zi ) +
1
2

! 2
NX

i =1

zi �zi (30)

The virtue of the harmonic con�nement is to lift the degeneracy with respect to
the angular momentum l i of the 1-body Landau eigenstates: the harmonic LLL
spectrum3 becomes

s
! l i +1

t

�l i !
zl i

i exp(�
1
2

! tzi �zi ); l i � 0; E = ( ! t � ! c)( l i + 1) + ! c (32)

2From this point of view one can argue that the Landau spectrum is continuous, albeit being made of discrete
Landau levels, due to the in�nite degeneracy on each level.

3The complete 2d harmonic Landau spectrum is, with the conven tion eB > 0,

! t (2n i + l i + 1) � l i ! c ; n i � 0; l i 2 Z (31)

The LLL quantum numbers are n i = 0 and l i � 0 .
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where! t =
p

! 2 + ! 2
c . Each harmonic LLL level in (32) has now a �nite degeneracy,

with an eigenstate still analytic in zi , up to the long-distance harmonic Landau
combined exponential behavior. Let us take into account this exponential behavior
in the rede�nition of the free N -body wavefunction so that (22) now becomes

 0(z1; z2; :::; zN ; �z1; �z2; :::; �zN ) =

Y

i<j

z� �
ij exp(�

1
2

! t

NX

i =1

zi �zi ) ~ (z1; z2; :::; zN ; �z1; �z2; :::; �zN ) (33)

Starting from the Hamiltonian (30) one obtains [32, 33]

~HN = � 2
NX

i =1

(@i
�@i �

! t + ! c

2
�zi

�@i �
! t � ! c

2
zi @i )

+ 2�
X

i<j

� 1
zi � zj

( �@i � �@j ) �
! t � ! c

2

�
+ N! c (34)

Again let us act onN -body eigenstates made, in analogy with (25), of symmetrized
products of the 1-body harmonic LLL eigenstates (32)

~ (z1; z2; :::; zN ; �z1; �z2; :::; �zN ) = Sym
NY

i =1

zl i
i ; 0 � l1 � l2 � ::: � lN (35)

Acting on this basis, the Hamiltonian (34) rewrites as

~HN = ( ! t � ! c)
� NX

i =1

zi @i � �
N (N � 1)

2
+ N

�
+ N! c (36)

so that the N -anyon energy spectrum is

EN = ( ! t � ! c)
� NX

i =1

l i � �
N (N � 1)

2
+ N

�
+ N! c (37)

The N -anyon spectrum (37) is a sum of 1-body harmonic LLL spectra shifted by
the 2-body statistical term� (! t � ! c)�N (N � 1)=2. The e�ect of the harmonic well
has been not only to lift the degeneracy with respect to thel i 's, but also to make the
energy dependence on� explicit. When computing thermodynamical quantities like
the equation of state, the harmonic well regulator will alsobe needed to compute
�nite quantities in a �nite \harmonic" box, and then take the thermodynamic limit,
by letting ! ! 0 in an appropriate way.

The resulting eigenstates from (33)

 0(z1; z2; :::; zN ; �z1; �z2; :::; �zN ) =
Y

i<j

z� �
ij exp(�

1
2

! t

NX

i =1

zi �zi )Sym
NY

i =1

zl i
i ;

0 � l1 � l2 � ::: � lN (38)
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are called "linear states" since their energy (37) varies linearly with � . As already
stressed, they constitute a set of exactN -body eigenstates which is only a small part
of the completeN -body spectrum, which remains mostly unknown. However, what
makes, in the LLL context, these linear states particularlyinteresting is that they
continuously interpolate when� = 0 ! � 1 from the complete harmonic LLL-Bose
basis to the complete harmonic LLL-Fermi basis.

Before turning to LLL-anyon thermodynamics, let us reconsider the physical
charge-ux composite interpretation of the anyon model, where the charges are
now coupled to an external magnetic �eld. A given particle, say the N th, sees a
\positive" ( eB > 0) magnetic �eld perpendicular to the plane, andN � 1 \negative"
(e� = 2�� < 0, � 2 [� 1; 0]) point vortices piercing the plane at the positions of the
other particles. This is a screening regime: in the largeN limit where a mean �eld
picture is expected to be valid, the more� is close to the fermionic point� = � 1, the
more the external magnetic �eld is screened by the mean magnetic �eld associated
with the vortices. In terms of the total (external + mean) magnetic �eld hB i that
the N th particle sees, or rather in terms of its uxVhB i , or, when counted in units
of the ux quantum, in terms of the Landau degeneracyhNL i , one has

VhBi =� 0 = ( V B)=� 0 + ( N � 1)�=� 0 i:e: hNL i = NL + ( N � 1)� (39)

Moving away from the Bose point, i.e.� � 0, asN increases the numberhNL i of
1-body quantum states available for theN th particle in the LLL of hB i decreases.
This sounds reasonable, bearing in mind that a fermion occupies a quantum state
to the exclusion of others (Pauli exclusion), whereas bosons can condense (Bose
condensation). Introducing the LLL �lling factor

� =
N
NL

(40)

one deduces from (39) a maximal critical �lling [29] for which the screening is total,
hNL i = 0

� = �
1
�

(41)

This is nothing but recognizing once more that bosons (� = 0) can in�nitely �ll a
quantum state (� = 1 ), whereas fermions (� = � 1) are at most one per quantum
state (� = 1). In between, one �nds that there are at most� 1=� anyons per quantum
state.

Interestingly enough, Haldane/exclusion statistics de�nition 4 happens to coin-
cide with (39): for a gas of particles obeying Haldane/
exclusion statistics [34] with statistical parameterg 2 [0; 1], given NL degener-
ate energy levels andN � 1 particles already populating the levels, the numberdN

of quantum states still available for theN th particle is given by (39) where� � is
replaced byg

dN = NL � (N � 1)g (42)

On the one hand, Haldane's de�nition (42) stems from an arbitrary combinatorial
point of view, inspired by the Bose and Fermi counting of states. On the other hand,
in the LLL-anyon model, (39) is obtained from a somehow ad-hoc mean �eld ansatz.
We will come back to these issues in the next section.

4This is Haldane's statistics for one particle species. It ca n be generalized to the multispecies case.
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3 LLL-anyon thermodynamics

Let us rewrite the N -body energy (37) as [37]

EN =
NX

i =1

(� 0 + l i ~! ) � �
N (N � 1)

2
~! ; 0 � l1 � l2 � ::: � lN (43)

with ~! = ( ! t � ! c) and � 0 = ! c. Introducing the fugacity z and the inverse temper-
ature � , one wants to compute the thermodynamic potential

ln Z (�; z ) = ln(
1X

N =0

zN ZN ); Z0 = 1 (44)

whereZ(�; z ) is the grand partition function de�ned in terms of the N -body parti-
tion functions ZN = Tr exp( � �H 0

N ) = Tr exp( � �H N ) = Tr exp( � � ~HN ). The ther-
modynamic potential rewrites as lnZ (�; z ) =

P 1
n=1 bnzn where, at order zn , the

cluster coe�cient bn only requires the knowledge of theZ i 's, with i � n. One is in-
terested in evaluating the thermodynamic potential in the thermodynamical limit,
i.e. ! is small, which means, here, that the dimensionless quantity �! is small. The
N -body spectrum, as given in (43), allows to compute, at leading order in �! ! 0,
the Z i 's for i � n, and thus the bn 's

bn =
1

� ~!
e� n�! c

n2

n� 1Y

k=1

k + n�
k

; b1 =
1

� ~!
e� �! c (45)

One has still to give a meaning, in the thermodynamic limit�! = 0, to the scaling
factor 1=(� ~! ) in (45). To this purpose, one temporarily switches o� the anyonic
interaction and the external magnetic �eld, and considers aquantum gas of non
interacting harmonic oscillators per se. One asks, when�! ! 0, for its cluster
coe�cients to yield the in�nite box (plane wave) cluster coe�cients. At order n in
the cluster expansion, ind dimensions, one obtains [10]

lim
�! ! 0

(
1

n(�! )2
)

d
2 =

V
� d

(46)

where � =
p

2�� is the thermal wavelength andV is the d-dimensional in�nite
volume (in d = 2 dimensions, V is, as de�ned above, the in�nite area of the 2d
sample). Using the thermodynamic limit prescription (46),the cluster coe�cient
(45) rewrites, in the thermodynamic limit, as [29]

bn = NL
e� n�! c

n

n� 1Y

k=1

k + n�
k

; b1 = NL e� �! c (47)

The cluster expansion lnZ (�; z ) =
P 1

n=1 bnzn , as a power series ofze� �! c

< 1, can be summed up

ln Z (�; z ) = NL ln y(ze� �! c ) (48)

wherey(ze� �! c ), a function of the variableze� �! c , is such that

ln y = ze� �! c +
1X

n=2

(ze� �! c )n

n

n� 1Y

k=1

k + n�
k

(49)
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It obeys [29]
y � ze� �! c y1+ � = 1 (50)

and has in turn a power series expansion [38]

y = 1 + ze� �! c +
1X

n=2

(ze� �! c )n
nY

k=2

k + n�
k

(51)

From (48) one infers thatZ (�; z ) = yNL so that [32, 39]

Z (�; z ) = yNL = 1 + NL ze� �! c + NL

1X

N =2

(ze� �! c )N
NY

k=2

k + NL + N� � 1
k

(52)

Clearly, from (52), the N -body partition function ZN is

ZN = NL e� N�! c

NY

k=2

k + NL + N� � 1
k

(53)

It is, by construction, positive. Necessarily,� and NL being given,N has to be such
that NL + N� � 0. This always is the case as long asN is �nite, since NL scales like
the in�nite surface of the 2d sample. In the thermodynamic limit, where N ! 1 ,
the condition NL + N� � 0 implies for the �lling factor

� � �
1
�

(54)

It is rather striking that the RHS of (54), which has just beenderived from the
exact computation of the cluster coe�cients from theN -body spectrum, is nothing
but the critical �lling (41) obtained in the mean �eld approa ch when the screening
is total.

The \degeneracy\ associated withN anyons populating the LLL quantum states
is, from (53),

NL

NY

k=2

k + NL + N� � 1
k

=
NL

N !
(N + NL + N� � 1)!

(NL + N� )!
(55)

where a factorial with a negative argument has to be understood as (� p)! = lim x! 0

(� p + x)!.
When � = 0, this is the usual Bose counting factor for the number of ways to

put N bosons inNL states
(N + NL � 1)!
N !(NL � 1)!

(56)

When � = � 1, this is the Fermi counting factorNL !=(N !(NL � N )!). If one considers
for a moment the statistical parameter to be a negative integer � � � 1 , the
degeneracy (55) still allows for a combinatorial interpretation [38] : provided again
that NL + N� � 0, it is the number of ways to putN particles on a circle consisting
of NL quantum states such that there are at least� � � 1 empty states in between two
occupied states. When� = � 1, this is nothing but the usual exclusion mechanism
for fermions (one fermion at most per quantum state). When� � � 1, i.e. beyond
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the Fermi point, more and more states are excluded between two �lled states. In the
case of interest� in [� 1; 0], one has a "fractional\ exclusion where one can put more
than one particle per quantum state according to the fractional � , but not in�nitely
many as in the Bose case.

The degeneracy (55) originates from the exactN -body spectrum (37). In the
case of Haldane statistics as de�ned in (42), there is no Hamiltonian and no N -body
spectrum to begin with. One rather starts from the Bose counting factor (56) and
bluntly replaces, in accordance with (42),NL by NL � (N � 1)g to obtain

(NL � (N � 1)(g � 1))!
N !(NL � (N � 1)g � 1)!

; (57)

which indeed interpolates, wheng = 1, to the Fermi counting factor. The degeneracy
(57) is similar to (55): if one allows the exclusion parameter g to be an integer, it
counts [38] the number of ways to putN particles on a line of �nite length consisting
of NL quantum states such that there are at leastg � 1 empty states in between
two occupied states. Up to boundary conditions on the space of available quantum
states (periodic versus in�nite wall), both counting (55, 57) are identical. In the
thermodynamic limit when N becomes large, boundary conditions should not play
a role anymore: not surprisingly, starting from (57) and following the usual route of
statistical mechanics [40] (saddle-point approximation)leads, in the thermodynamic
limit, to the same LLL-anyon thermodynamic potential givenby the equations (48)
and (50), where the anyonic parameter� � is replaced by the exclusion parameter
g.

Note that the grand partition factorization Z(�; z ) = yNL in (48) could suggest
[41] an interpretation of y as a LLL-anyon grand-partition function for a single
quantum state at energy! c, on the same footing as, when� = 0 or � = � 1,
y = (1 � ze� �! c )� 1 is indeed the single quantum state grand partition functionfor
a Bose or Fermi gas. This interpretation is not possible for the reason advocated
above: it would yield, as soon as� is fractional, negativeN -body partition functions.
This is clearly impossible: theN -body anyonic system is, except in the Bose and
Fermi cases, truly interacting and therefore its statistical mechanics is by no means
factorisable to a single-state statistical mechanics.

From (48, 50), the average energy�E � � @ln Z(�; z )=@�and the average parti-
cle number �N � z@ln Z(�; z )=@zor, equivalently, the �lling factor � = �N=NL , can
be computed.� satis�es

y = 1 +
�

1 + ��
(58)

or, equivalently, using (50)

ze� �! c =
�

(1 + (1 + � )� )1+ � (1 + �� )� �
(59)

When � 6= 0 and � 6= � 1, this equation cannot in general be solved analytically,
except in special cases like� = � 1=2 (semions). The equation of state follows

�P V = ln(1 +
�

1 + ��
) (60)

In all these equations, it is understood from (54) that� � � 1=� . When � = � 1=� ,
the pressure diverges, a manifestation of the fact that there are as many anyons



Vol. XI, 2007 Anyons and Lowest Landau Level Anyons 93

as possible in the LLL, higher Landau levels being forbiddenby construction. One
also notes that, for the degenerate LLL gas, the �lling factor in (59) is nothing but
the mean occupation numbern at energy � = ! c and fugacity z. As expected, (59)
at � = 0 gives the standard Bose mean occupation numbern = ze� �� =(1 � ze� �� ),
whereas at� = � 1 it gives the Fermi mean occupation numbern = ze� �� =(1+ ze� �� ).

The entropy S � ln Z (�; z ) + � �E � (ln z) �N is (trivially �E = �N! c since theN
particles are in the LLL)

S = NL
�
(1 + � (1 + � )) ln(1 + � (1 + � )) � (1 + �� ) ln(1 + �� ) � � ln �

�
(61)

It vanishes when� = � 1=� , an indication that the N -body LLL anyon eigenstate is
not degenerate at the critical �lling. From (37), one infersthat the N -body eigenstate
of lowest energy has all its one-body orbital momenta quantum numbers l i = 0. It
follows from (26) that, in the thermodynamic limit at the critical �lling, the LLL-
anyon non-degenerate groundstate wavefunction is

 0(z1; z2; :::; zN ; �z1; �z2; :::; �zN ) =
Y

i<j

z� �
ij exp(�

1
2

! c

NX

i =1

zi �zi ); � = �
1
�

(62)

with total angular momentum

L =
N (N � 1)

2�
(63)

The pattern in (62) is reminiscent of the Laughlin wavefunctions at FQHE �llings
� = 1=(2m + 1)

 (z1; z2; :::; zN ; �z1; �z2; :::; �zN ) =
Y

i<j

z2m+1
ij exp(�

1
2

! c

NX

i =1

zi �zi );

� =
1

2m + 1
(64)

On the one hand, Laughlin wavefunctions are fermionic, their �lling factors are ratio-
nal numbers smaller than 1, and they are approximate solutions to the underlying
N -body Coulomb dynamics in a strong magnetic �eld. On the other hand, LLL-
anyon wavefunctions are multivalued, their �lling factor continuously interpolates
between1 and 1, and they are exact solutions to theN -body LLL anyon problem.
Still, the similarity between (62) and (64) is striking.

Trying to push (62) further beyond the Fermi point eventually up to the Bose
point at � = � 2, one obtains a Bose gas at �lling� = 1=2 with the non-degenerate
wavefunction

 0(z1; z2; :::; zN ; �z1; �z2; :::; �zN ) =
Y

i<j

z2
ij exp(�

1
2

! c

NX

i =1

zi �zi ); � =
1
2

(65)

One already knows that the LLL-anyon basis (26) is not interpolating to the com-
plete LLL-Bose basis when� = � 2. At this point, non LLL N -body eigenstates
merge in the LLL ground state to compensate for some missing bosonic quantum
numbers -see Figure 3. Clearly, (65) should reproduce, by periodicity, the bosonic
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non-degenerate wavefunction (62) at� = 0, but it does not. On the same footing,
when� = � 2 the critical �lling should be bosonic, i.e.� = 1 , whereas� = 1=2. The
unphysical critical �lling discontinuity, 1 versus 1=2, is yet another manifestation
of the missing bosonic quantum numbers. In other words, the very eigenstates which
join the LLL ground state at the Bose point � = � 2 and provide for the missing
quantum numbers, have the e�ect to smooth out the critical �lling discontinuity.
Still, it has been shown [35] that the stronger the magnetic �eld B is, the more valid
(62) remains closer and closer to� = � 2. The limit � ! � 2 is, due to periodicity,
the same as the limit� ! 0 from above, which can be described as an anti-screening
regime. One concludes that close to the Bose point� = 0, the critical �lling of a
LLL-anyon gas is � = 1 or � = 1=2 depending on in�nitesimally moving away
from the Bose point in the screening regime (the ground statewavefunction is the
usual non degenerate bosonic wavefunction), or in the anti-screening regime (the
ground state wavefunction is (65)). Again, the Bose point has a somehow singular
behavior, a feature already encountered in perturbation theory. Note �nally that the
occurrence of the� = 1=2 fraction for the bosonic �lling factor in the antiscreen-
ing regime is physically challenging: fast rotating Bose-Einstein condensates in the
FQHE regime are expected [36] to reach a 1=2 �lling described by the Laughlin-like
wavefunction (65).

Figure 4: The critical LLL-anyon �lling curve as a function o f � . The critical Bose �lling � = 1
2

occurs at the Bose points in the anti-screening regime. The continuity of the critical curve at these
points is restaured by the non LLL eigenstates joining the LLL ground state.

So far one has been concerned with two-dimensional systems:in the thermody-
namic limit, a single particle in the LLL, and, consequently, a gas of LLL-anyons,
are two dimensional, as can be seen from theNL ' V scalings5 of the 1-body LLL
partition function ZLLL = NL exp(� �! c) and the LLL anyon thermodynamic po-
tential (48). Denoting by � LLL (� ) = NL � (� � ! c) the 1-body LLL density of states,

5 In the LLL there is only one quantum number l i per particle, still the system is 2d.
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(48) can be rewritten as

ln Z (�; z ) =
Z 1

0
� LLL (� ) ln y(ze� �� )d� (66)

Convincingly, in (66) the one-body dynamics of individual particles is described by
the one-body density of states, whereas the LLL anyon statistical collective behavior
is encoded in they function which depends on the statistical parameter� .

One might ask about other integrableN -body systems which would lead to
the same kind of statistics. It would be tempting to de�ne a model obeying frac-
tional/exclusion statistics if, its one-body density of states � (� ) being given, its
thermodynamic potential has the form

ln Z(�; z ) =
Z 1

0
� (� ) ln y(ze� �� )d� (67)

with
y � ze� �� y1+ � = 1 (68)

so that

y = 1 + ze� �� +
1X

n=2

(ze� �� )n
nY

k=2

k + n�
k

(69)

The mean occupation number follows asn = z@ln y=@z. It obeys

y = 1 +
n

1 + �n
; or n =

y � 1
1 � � (y � 1)

� 0 (70)

or, equivalently,
ze� �� =

n
(1 + (1 + � )n)1+ � (1 + �n )� �

(71)

One has the duality relation [41]

1 =
1
y

+
1
~y
; where ~y � (ze� �� )� 1~y1+ 1

� = 1 (72)

or, equivalently

� �n �
1
�

~n = 1 (73)

where ~n is related to ~y as n to y in (70). The duality relation (72,73) can be in-
terpreted as a particle-hole symmetry relation. Settingt = ze� �! c , one also has a
simple expression [42] fordn(t)=dt

t
dn
dt

= n(1 + (1 + � )n)(1 + �n ) (74)

All these equations have been understood as arising microscopically from the
LLL anyon Hamiltonian with one-body density of states� (� ) = � LLL (� ). It happens
that it is possible to �nd another N -body microscopic Hamiltonian which leads
to the thermodynamics (67). Consider, in one dimension, theintegrable N -body
Calogero model [43] with inverse-square 2-body interactions

HN = �
1
2

NX

i =

@2

@x2i
+ � (1 + � )

X

i<j

1
(x i � x j )2

+
1
2

! 2
NX

i =1

x2
i (75)
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where x i represents the position of thei -th particle on the in�nite 1d line. This
model is known to describe particles with nontrivial statistics in one dimension
interpolating from Bose (� = 0) to Fermi ( � = � 1) statistics. It means that the
1=x2 Calogero interaction is purely statistical, without any classical e�ect on particle
motions, up to a overall reshu�ing of the particles [44]. TheCalogero model remains
integrable when, as in (75), a con�ning 1d harmonic well is added. This is the
harmonic Calogero model, whereas the Calogero-Sutherlandmodel [46] would have
the particles con�ned on a circle. The e�ect of the harmonic well is, as in the LLL
anyon case, to lift the thermodynamic limit degeneracy in such a way that the
N -body harmonic Calogero spectrum ends up depending on the Calogero coupling
constant �

EN = !
� NX

i =1

l i � �
N (N � 1)

2
+

N
2

�
; 0 � l1 � l2 � ::: � lN (76)

Here the l i 's correspond to the quantum numbers of the 1-d harmonic Hermite
polynomials free 1-body eigenstates

(
!
�

)1=4 1
p

2l i l i !
e� 1

2 !x 2
i H l i (

p
!x i ); l i � 0; E = ! (l i +

1
2

) (77)

It is remarkable that (76) happens to be again of the form (43)with ~! = ! ,
� 0 = != 2. Following the same steps as in the LLL-anyon case, and using again (46)
while taking the thermodynamic limit �! ! 0, the Calogero cluster coe�cients
rewrite as

bn =
L
�

1
n

p
n

n� 1Y

k=1

k + n�
k

; b1 =
L
�

(78)

where the in�nite length of the 1d line has been denoted byL. The cluster expansion
can still be resumed using (49) provided the unwanted 1=

p
n term in (78) is properly

taken care of. Introducing the 1d plane wave momentumk

1
�

p
n

=
1

2�

Z 1

�1
dke� n� k 2

2 (79)

and denoting the 1-body energy as� = k2=2, one �nally obtains

ln Z (�; z ) =
Z 1

0
� 0(� ) ln y(ze� �� )d� (80)

where

� 0(� ) =
L

�
p

2�
(81)

is the free 1-body density of states in one dimension. This isnot a surprise: in the
thermodynamic limit ! ! 0, wherel i ! 1 with l i ! = k2

i =2 kept �xed, the Hermite
polynomial H l i becomes a plane wave of momentumki .

From (80), one concludes6 that, in the thermodynamic limit, the Calogero model
has indeed a LLL-anyon/exclusion like statistics [45] according to (67) and (68),

6The same conclusion would be reached starting form the Calog ero-Sutherland model and taking the correspond-
ing thermodynamic limit, i.e. the radius of the con�ning cir cle going to in�nity.
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interpolating, as it should, from a free bosonic 1d gas at� = 0 to a free fermionic
1d gas at� = � 1.

It follows that the 2d LLL-anyon and 1d Calogero models, which seem a priori
unrelated, do obey the same type of statistics. This is not a coincidence. Looking at
their harmonic N -body spectrum (37) and (76), one realizes that, up to an irrelevant
zero-point energy, the latter is theB ! 0 limit of the former. This remains true in
the thermodynamic limit ! ! 0. So, not only (66) and (80) are of the same type,
but also, when B ! 0, (66) has to become (80). It follows that, necessarily, the
1-body densities of states� LLL (� ) and � 0(� ) satisfy limB ! 0 � LLL (� ) = � 0(� ), i.e.

lim
B ! 0

eBV
2�

� (� �
eB
2

) =
L

�
p

2�
(82)

a relation which has to be understood as arising in the thermodynamic limit ! ! 0.
To arrive at (82), one could as well consider directly the 1-body harmonic LLL

spectrum (32) and harmonic 1d spectrum (77)

E = ( ! t � ! c)( l i + 1) + ! c; E = ! (l i +
1
2

) (83)

They are such that the latter is the vanishingB limit of the former, so it is the case
for the corresponding 1-body partition functions. Taking then7 the thermodynamic
limit �! ! 0, i.e. (46), implies the relation limB ! 0 ZLLL = Z0, where ZLLL is,
as above, the LLL partition function and Z0 is the free partition function in one
dimension. Consequently for the densities of states (the inverse Laplace transforms)
the relation (82) follows. This result has its roots in the di�erent energy gaps of the
spectra (83) at small! : in the harmonic LLL case, the gap behaves like! 2=(2! c),
whereas, in the 1d harmonic case, the gap is! .

The relation (82) could also have been understood from the 1-body eigenstates
themselves. In the limitB ! 0, the LLL induced harmonic analytic eigenstates are,
from (32), s

(
! l i +1

�l i !
)zl i

i e� 1
2 !z i �zi (84)

There is only one parameter! left so that the states in (84) can be put in one-to-one
correspondence with the Hermite polynomials (77) via the Bargmann transform

p
! l i +1 zl i

i = !
Z 1

�1
dxi

1
p

2l i
e� ! (x2

i � zi x i
p

2+ z2
i =2)H l i (

p
!x i ) (85)

From (85) one can infer [47] that theN -body harmonic anyon eigenstates (38) are
a coherent state representation of theN -body harmonic Calogero eigenstates.

From all these considerations (thermodynamics, eigenstates,...) it follows that
the vanishing magnetic �eld limit8 of the LLL-anyon model is the Calogero model
itself. It seems paradoxical to consider such a limit in the LLL which assumes a

7The order of limits is crucial here: �rst the limit B ! 0, then the thermodynamic limit ! ! 0.
8Since one has ended up by taking the limit B ! 0, one could have avoided right from the beginning to introdu ce

a B �eld, and started directly from the harmonic N -body anyon model. What has been done above by taking the
limit B ! 0 is nothing but to project the harmonic anyon model on the LLL induced harmonic subspace (84) (the
B �eld and its LLL should still be invoked to justify the select ion of the LLL quantum numbers in the 2d harmonic
basis) and to recognize that the projected harmonic anyon mo del is the harmonic Calogero model. This relation
remains true in the thermodynamic limit ! ! 0.
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priori a strong magnetic �eld. Still, doing so, one has dimensionally reduced the 2d
anyon model to the 1d Calogero model. This dimensional reduction has a simple
geometrical interpretation. The LLL induced harmonic states (84) are localized in
the vicinity of circles of radiusl i =! . In the thermodynamic limit, one hasl i ! 1 with
l i ! = k2

i =2 kept �xed. It follows that the corresponding 1d Hermite polynomialsH l i ,
which become in this limit plane waves of momentumki , have a radius of localization
diverging like k2

i =! 2. The dimensional reduction which has taken place consists in
going at in�nity on the edge of the plane: in the thermodynamic limit, the Calogero
model can be viewed as the edge projection of the anyon model.

The LLL anyon thermodynamics, or, equivalently, the Haldane/
exclusion thermodynamics, and the Calogero thermodynamics as well, have been the
subject of an intense activity since the mid-nineties. Let us mention their relevance
in more abstract contexts, such as conformal �eld theories [48]. On the experimental
side, FQHE edge currents can be modelled by quasiparticles with fractional statis-
tics, which in turn might a�ect their transport properties such as the current shot
noise [49, 42].

4 Minimal Di�erence Partitions and Trees

Up to now one has been concerned with quantum mechanical models de�ned by
a microscopic quantum Hamiltonian. Both the LLL anyon and Calogero models
have been shown to have a thermodynamics controlled by (67) and (68). Let us
leave quantum mechanics and address a pure combinatorial problem, the minimal
di�erence partition problem [50]. Consider the number� (E; N ) of partitions of an
integer E into N integer parts where each part di�ers from the next by at least
an integer p and the smallest part is� l . Usual integer partitions correspond to
p = 0 and l = 1, whereas restricted partitions, where the parts have to be di�erent,
correspond top = 1 and l = 1.

Figure 5: A minimal di�erence partition con�guration, or Yo ung diagram. The column heights are
such that (l i � l i +1 ) � p for i = 1 ; 2; : : : ; N � 1 and l i � l . Their total height is E =

P N
i =1 l i . Wh

is the width of the Young diagram at height h, i.e. the number of columns whose heights� h.
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It is known that
X

E

� (E; N )xE =
x lN + pN (N � 1)=2

(1 � x)(1 � x2):::(1 � xN )
(86)

The � (E; N ) generating functionZ(x; z) =
P 1

E;N � (E; N )xE zN factorizes whenp =
0 or p = 1

p = 0; Z(x; z) =
1Y

i =0

1
1 � x l+ i z

; p = 1; Z(x; z) =
1Y

i =0

(1 + x l+ i z) (87)

In terms of bosons or fermions, (87) is the grand partition function for a bosonic or
fermionic gas with fugacityz and, denotingx = e� � , temperature T = 1=� where

E =
1X

i =0

ni (l + i ) N =
1X

i =0

ni (88)

with ni = 0; 1; 2; ::: in the Bose case (p = 0) and ni = 0; 1 in the Fermi case (p = 1).
Equivalently

E =
NX

i =1

l i (89)

with l � l1 � l2 � : : : � lN (Bose) or l � l1 < l 2 < : : : < l N (Fermi).
When p is an integer� 2, (86) can be regarded as theN -body partition function

of an interacting bosonic gas with theN -body spectrum

E =
NX

i =1

l i + pN(N � 1)=2; l � l1 � l2 � : : : � lN (90)

Clearly, (90) goes beyond the Fermi pointp = 1 and describes some kind of "super-
fermions". In contrast to the Bose and Fermi cases, a factorization such as (87) is
not possible, due to the interacting nature of (90). One has instead the functional
relation

Z(x; z) = Z(x; xz) + x l zZ(x; xpz) (91)

which embodies the combinatorial identity

� (E; N ) = � 0

�
E � p

N (N � 1)
2

; N
�

(92)

where � 0(E; N ) stands for the usual partition counting.
One could push [51] this analysis further top real positive. When p 2 [0; 1]

and l = 1, one would obtain a partition problem interpolating between the usual
(bosonic) one and the restricted (fermionic) one. It is manifest that, if p is replaced
by � � , the spectrum (90) coincides, under a rescaling and up to an irrelevant zero-
point energy, with the N -body quantum spectrum (76) of the harmonic Calogero
model. In a partition problem, one is interested in the largeE and N asymptotic
behavior of � (E; N ), which corresponds to the regimex ! 1, i.e. � ! 0. Consider
the cluster expansion lnZ (x; z) =

P 1
n=1 bnzn . In the limit � ! 0 one obtains

bn =
1
�

e� nl�

n2

n� 1Y

k=1

(1 �
pn
k

); b1 =
1
�

e� l� (93)
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The limit � ! 0 should not be confused with the thermodynamic limit in quantum
systems. There is no thermodynamic limit prescription like(46). Still, using (49)
(with ! c replaced by l) and taking care of the unwanted 1=n factor in (93), one
obtains, provided that ze� �l < 1,

ln Z (�; z ) =
Z 1

l
ln y(ze� �� )d� (94)

with
y � ze� �� y1� p = 1 (95)

This is again of the form (67) and (68), the statistical parameter � � being replaced
by the minimal di�erence partition parameter p, and the 1-body density of states
being the Heaviside function� (� ) = � (� � l ). The minimal di�erence partition combi-
natorics is equivalently described, in the small� limit, by a gas of particles obeying
exclusion statistics with a uniform density of states9.

This correspondence happens to be useful technically: (94)and (95) are the
building blocks of the minimal di�erence partition asymptotics. The average integer
�E = � @ln Z(�; z )=@� =

R1
l n�d� and the average number of integer parts�N =

z@ln Z(�; z )=@z=
R1

l nd� , are both given in terms ofn = z@ln y=@z, the mean
occupation number at "part" � and fugacity z, which satis�es

ze� �� =
n

(1 + (1 � p)n)1� p(1 � pn)p
with n �

1
p

(96)

One obtains
�E � l �N =

1
�

ln Z (�; z ) �N =
1
�

ln y(ze� �l ) (97)

so that the entropy10 S � ln Z (�; z ) + � �E � (ln z) �N rewrites as

S = 2�
�

�E � l �N �
p
2

�N 2

�
� �N ln(1 � e� � �N ) (98)

with

�E � l �N �
p
2

�N 2 = �
1
� 2

Z 1� e� � �N

0

ln(1 � u)
u

du (99)

Inverting (99) gives� as a function of �E and �N so that the entropyS in (98) becomes
a function of �E and �N only. Doing so, one has a de�nite information [51] on the
asymptotic behavior of � (E; N ) ' eS(E;N ) when E and N are large, and also, of
� (E) =

P 1
N =1 � (E; N ) when E is large. One obtains a generalization of the Hardy-

Ramajunan asymptotics [52] to the minimal di�erence partition problem. One can
also obtain [53] the average limit shape of the Young diagrams associated with the
minimal di�erence partition problem, generalizing the usual partition limit shape
[54]. The limit shape at a part of heighth depends solely on the statistical function
y evaluated at � = h and at z = 1

� �Wh = ln y(e� �h ) (100)

where � scales as� 2E =
R1

0 ln y(e� � )d� .
9There is no microscopic quantum Hamiltonian leading to (94) and (95).

10 The simple expression in (97) for �N is possible because of the constant density of states.
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So farp being a positive integer has insured that theN -body spectrum in (90)
is well de�ned. However,y in (95) is still meaningful whenp is a negative integer.
It is the (1 � p)-ary tree generating function, so that the coe�cient at order n of its
expansion in powers ofze� �� as given in (69) (with � � replaced byp) is the number
of ways to build a (1� p)-ary tree with n nodes. For example, atp = � 1, y generates
the Catalan numbers associated with binary trees.

Consider, as a toy model [55], the factorized (1� p)-ary tree generating function

Z(x; z) =
1Y

i =0

y(zxl+ i ) (101)

wherey satis�es (101) with � = l + i . (101) narrows down to (87) whenp = 0 (Bose
case). Its combinatorial interpretation is that � (E; N ) deduced from (101) counts
the number of usual partitions of an integerE into N integer parts bigger or equal
to l, with an additional degeneracy stemming from the (1� p)-tree arborescence
when, in a given partition, a part occursn times. This enlarged degeneracy goes
beyond the Bose point to de�ne some kind of "superbosons".

One can analytically continuep to the whole negative real axis. In the large
E and N limit, i.e. � smaller and smaller, one encounters a maximal temperature
beyond which it is not possible to heat the system. Indeed, from (95) it follows that
y(zxl+ i ) in (101) obeys toy � ze� � (l+ i )y1� p = 1, which is well de�ned only if [39]

ze� �l < (1 � p)p� 1(� p)� p < 1 (102)

When z = 1, it de�nes a dimensionless "Hagedorn temperature"

T =
l

(1 � p) ln(1 � p) + pln(� p)
(103)

just below which E and N become large so that the asymptotic of� (E; N ) can be
addressed.

5 Conclusion

In two dimensions intermediate anyonic statistics interpolating from Bose to Fermi
statistics are allowed. Their de�nition does not involve anything else than the usual
concept at the basis of quantum statistics, namely free particles endowed with par-
ticular boundary exchange conditions on theirN -body wavefunctions. It happens
that these boundary conditions have a much richer structurein two dimensions
than in three and higher dimensions. This in turn can be understood in terms of the
topology of paths in theN -particle con�guration space, where non trivial braiding
occurs in two dimensions, and not in higher dimensions. A ux-charge composite
picture emerges to encode the braiding statistics in physical terms, via topological
Aharonov-Bohm interactions and singular magnetic �elds.

The anyon model as such is certainly fascinating as far as quantum mechanics
is concerned, but it remains an abstract construction whosecomplexity is daunting.
However, when projected onto the LLL of an external magnetic�eld, the model
becomes tractable and, even more, solvable. The LLL set up isclearly adapted
to the QHE and to the FQHE physics. Haldane/exclusion statistics, which can be
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obtained as a LLL-anyon mean-�eld picture in the screening regime, leads to LLL-
anyon thermodynamics.

It would certainly be rewarding if LLL anyons could be relevant experimentally,
for example by uncovering some experimental hints at FQHE �lling factors of the ex-
istence of quasiparticles with anyonic/
exclusion statistics. Fractional charges have already been seen in shot noise FQHE
experiments [56], but the nontrivial statistical nature ofthe charge carriers in FQHE
edge currents has so far remained elusive in experiments which rely mainly on
Aharonov-Bohm interferometry [28]. Note also a recent proposal for the possible
experimental tracking of abelian and nonabelian anyonic statistics in Mach-Zehnder
interferometers [57].

Finally, on the theoretical side, physical interactions, together with topological
anyonic interactions, should also be taken into account in order to produce more
realistic models.
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