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1 Introduction

Graphene is one atom thick layer of carbon atoms arranged in a honeycomb lattice.
This unique 2-dimensional (2D) crystal structures provide an additional degree of
freedom, termed as pseudo spin, to describe the orbital wave functions sitting in
two different sublattices of the honeycomb lattice. In the low energy spectrum of
graphene near the charge neutrality point, where the linear carrier dispersion mimics
the “quasi-relativistic” dispersion relation, pseudo spin replaces the role of real spin
in the usual relativistic Fermion energy spectrum. The exotic quantum transport
behavior discovered in graphene, such as the unusual half-integer quantum Hall
effect and Klein tunneling effect, are a direct consequence of this analogical “quasi
relativistic” quantum physics. In this lecture, I will make a connection of physics in
graphene to relativistic quantum physics employing the concept of pseudo-spin.

Many of the interesting physical phenomena appearing in graphene are gov-
erned by the unique chiral nature of the charge carriers in graphene owing to their
quasi relativistic quasiparticle dynamics described by the effective massless Dirac
equation. This interesting theoretical description can be dated back to Wallace’s
early work of the electronic band structure calculation of graphite in 1947 where he
used the simplest tight binding model and correctly captured the essence of the elec-
tronic band structure of graphene, the basic constituent of graphite [1]. Fig. 1 shows
the reconstructed the band structure of electrons in graphene where the energy can
be expressed by 2D momentum in the plane. The valence band (lower band) and
conduction band (upper band) touch at six points, where the Fermi level is located.
In the vicinity of these points, the energy dispersion relation is linear, mimicking
massless particle spectrum in relativistic physics. As we will later discuss in detail,
this interesting electronic structures also exhibit the chiral nature of carrier dynam-
ics, another important characteristics of relativistic quantum particles, rediscovered
several times in graphene in different contexts [2, 3, 4, 5].
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Figure 1: Energy band structure of graphene. Linear dispersion relation near the central part of
the bands are highlighted. Reproduced from Ref.[10].

In the following sections, after a brief survey of early experiments related to
graphene, we will focus on the chiral nature of the electron dynamics in mono-
layer graphene where the electron wave function’s pseudo-spin plays an important
role. We will present two experimental examples: the half-integer QHE [6, 7] and
the Klein tunneling effect in graphene [8]. The quasi relativistic quantum dynamics
of graphene has provided a compact and precise description for these unique ex-
perimental observations and further providing a playground for implementing tests
of quantum electrodynamics (QED) in a simple experimental situation [9], where
electron Fabry-Perrot oscillations were recently observed [8].

2 Early Experiment

Independent to earlier theoretical works, experimental efforts to obtain graphene
dated back to Böhm et al.’s early work of transmission electron microscopy [11] and
the early chemical deposition growth of graphene on metal surfaces developed in
the 1990s [12]. In the past decade, renewed efforts to obtain the atomically thin
graphite have been pursued through several different routes. In retrospect, these
various methods fall into two categories: the bottom-up approach and the top-down
approach. In the former, one started with carbon atoms and one tries to assemble
graphene sheets by chemical pathways [13, 14]. This is best exemplified by work of
the W. A. de Heer group at the Georgia Institute of Technology. In Ref. [14], they
demonstrated that thin graphite films can be grown by thermal decomposition on
the (0001) surface of 6H-SiC. This method opens the way to large scale integra-
tion of nanoelectronics based on graphene. Recent progress through this chemical
approach to graphene synthesis has had dazzling successes by diverse routes, includ-
ing epitaxial graphene growth [15], chemical vapor deposition [16, 17], and solution
processing [18].

On the other hand, the top-down approach starts with bulk graphite, which
essentially involves graphene sheets stacked together, and tries to extract graphene
sheets from the bulk by mechanical exfoliation. The mechanical extraction of layered
material dates back to the 1970s. In his seminal experiment [19], Frindt showed
that few layers of superconducting NbSe2 can be mechanically cleaved from a bulk
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crystal fixed on an insulating surface using epoxy. While it is known for decades that
people routinely cleave graphite using scotch tape when preparing sample surfaces
for Scanning Tunneling Microscopy (STM) study and all optics related studies, the
first experiment explicitly involving the mechanical cleavage of graphite using scotch
tape was carried out by Ohashi et al. [20]. The thinnest graphite film obtained in
this experiment was about 10 nm, corresponding to ∼30 layers.

Experimental work to synthesize very thin graphitic layers directly on top of a
substrate [21] or to extract graphene layers using chemical [22] or mechanical [23,
24, 25] exfoliation was demonstrated to produce graphitic samples with thicknesses
ranging from 1 to 100 nm. Systematic transport measurements have been carried
out on mesoscopic graphitic disks [26] and cleaved bulk crystals [20] with sample
thicknesses approaching ∼20 nm, exhibiting mostly bulk graphite properties at these
length scales. More controllability was attempted when Ruoff et al. worked out a
patterning method for bulk graphite into a mesoscopic scale structure to cleave off
thin graphite crystallites using atomic force microscopy [25].

A sudden burst of experimental and theoretical work on graphene followed
the first demonstration of single- and multi-layered graphene samples made by a
simple mechanical extraction method [27], while several other groups were trying
various different routes concurrently [28, 29, 14]. The method that Novoselov et al.
used was pretty general, and soon after, it was demonstrated to be applicable to
other layered materials [30]. This simple extraction technique is now known as the
mechanical exfoliation method. It also has a nick name, “scotch tape” method, since
the experimental procedure employs adhesive tapes to cleave off the host crystals
before the thin mesocoscopic samples are transferred to a target substrate, often
a silicon wafer coated with a thin oxide layer. A carefully tuned oxide thickness is
the key to identify single layer graphene samples among the debris of cleaved and
transferred mesoscopic graphite samples using the enhanced optical contrast effect
due to Fabry-Perot interference [31].

Since this first demonstration of experimental production of an isolated single
atomic layer of graphene sample, numerous unique electrical, chemical, and me-
chanical properties of graphene have been investigated. In particular, an unusual
half-integer quantum Hall effect (QHE) and a non-zero Berry’s phase [6, 7] were
discovered in graphene, providing unambiguous evidence for the existence of Dirac
fermions in graphene and distinguishing graphene from conventional 2D electronic
systems with a finite carrier mass.

3 Pseudospin Chirality in Graphene

Carbon atoms in graphene are arranged in a honeycomb lattice. This hexagonal ar-
rangement of carbon atoms can be decomposed into two interpenetrating triangular
sublattices related to each other by inversion symmetry. Taking two atomic orbitals
on each sublattice site as a basis (See Fig. 2), the tight binding Hamiltonian can be
simplified near two inequivalent Brillouin zone corners, K and K′) as

Ĥ = ±~vFσ · (−i~∇), (1)

where σ = (σx, σy) are the Pauli matrices , vF ≈ 106 m/s is the Fermi velocity in
graphene and the + (−) sign corresponds to taking the approximation that the wave
vector k is near the K (K′) point.
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Figure 2: (a) Real space image of graphene lattice structure. Two different sub-lattices are marked
by red and blue color. (b) Low energy approximation of energy band near the charge neutrality
of graphene energy band. Two inequivalent corner of the Brillouin zone are marked by K and K′,
respectively.

The structure of this “Dirac” equation is interesting for several reasons. First,
the resulting energy dispersion near the zone corners is linear in momentum, E(κ) =
±~vF |κ|, where the wave vector κ is defined relative to K(or K′), i.e., κ = k−K(or
K′). Consequently, the electrons near these two Dirac points always move at a
constant speed, given by the Fermi velocity vF ≈ c/300 (rather than the real speed
of light c). The electron dynamics in graphene are thus effectively “relativistic”,
where the speed of light is substituted by the electron Fermi velocity vF . In a perfect
graphene crystal, the Dirac points (K and K′) are coincident with the overall charge
neutrality point (CNP), since there are two carbon atoms in the unit cell of graphene
and each carbon atom contributes one electron to the two bands, resulting in the
Fermi energy EF of neutral graphene lying precisely at the half-filled band.

For the Bloch wave function near K′, the “Dirac” equation in Eq. (1) can be
rewritten as

Ĥ = ±~vFσ · κ . (2)

The solution of this massless Dirac fermion Hamiltonian is studied by [32, 5, 33]:

|κ〉 =
1√
2
eiκ·r

(
−ise−iθκ/2
eiθκ/2

)
, (3)

where θκ is the angle between κ = (κx, κy) and the y-axis, and s = +1 and −1
denote the states above and below K, respectively. The corresponding energy for
these states is given by

Es(κ) = s~vF |κ|, (4)

where s = +1/ − 1 is an index for the positive/negative energy band, respectively.
The two components of the state vector give the amplitudes of the electronic wave
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functions on the atoms of the two sublattices, so the angle θκ determines the char-
acter of the underlying atomic orbital mixing.

The two-component vector in formula in Eq. (3) can be viewed as a result of a
spinor-rotation of θκ around ẑ axis with the spin-1/2 rotation operator

R(θ) = exp

(
−iθ

2
σz

)
=

(
e−iθ/2 0

0 e+iθ/2

)
. (5)

More explicitly, the vectorial part of the Bloch state, |sp〉 = e−iκ·r|κ〉 can be
obtained from the initial state along the y-axis,

|s0
p〉 =

1√
2

(
−is
1

)
, (6)

by the rotation operation |sp〉 = R(θκ)|s0
p〉. Note that this rotation operation clearly

resembles that of a two-component spinor describing the electron spin, but arising
from the symmetry of the underlying honeycomb graphene lattice. In this regard,
|sp〉 is often called “pseudo spin” in contrast to the real spin of electrons in graphene.
The above operation also implies that the orientation of the pseudospin is tied to the
κ vector. This is completely analogous to the real spin of massless fermions which
always points along the direction of propagation. For s = +1, i.e., corresponding to
the upper cone at K in Fig. 1, the states have pseudospin parallel to κ, and thus
correspond to the right-handed Dirac fermions. For s = −1, i.e. for the antiparticles
in the lower cone, the situation is reversed, resulting in the left-handed Dirac anti-
fermions.

So far our analysis is focused on the K point. It would be interesting to see what
happens at the K′ point. We apply a similar analysis at K′, and the only difference
is that now we expand the Hamiltonian around the K′ point: k = κ+ K′. Then we
obtain a new equation for K′ from Eq. (1),

H = ~vFκ · σ̄, (7)

where σ̄ are the complex conjugate of the Pauli matrices σ. This Hamiltonian is
known to describe left-handed massless neutrinos. Therefore at K′ the electron dy-
namics is again characterized by massless Dirac fermions, but with opposite helicity.

The chirality of the electrons in graphene has important implications on the
electronic transport in graphene. In particular, a non-trivial Berry phase is associated
with the rotation of the 1/2-pseudo spinor which plays a critical role to understand
the unique charge transport in graphene and nanotubes, as first discussed in Ando
et. al [5]’s theoretical work. For example, let us consider a scattering process κ→ κ′

due to a potential V (r) with a range larger than the lattice constant in graphene,
so that it does not induce an inter valley scattering between K and K′ points. The
resulting matrix element between these two states is given by [5, 33]

|〈κ′|V (r)|κ〉|2 = |V (κ− κ′)|2 cos2(θκ,κ′/2), (8)

where θκ,κ′ is the angle between κ and κ′, and the cosine term comes from the overlap
of the initial and final spinors. A backscattering process corresponds to κ = −κ′.
In this case, θκ,κ′ = π and the matrix element vanishes. Therefore such backward
scattering is completely suppressed. In terms of the pseudo spin argument, this back
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scattering process can be described by rotating |κ〉 by the rotating operation R(π).
For an atomically smooth potential the matrix element in Eq. (8) can be expressed

〈κ′|V (r)|κ〉 ≈ V (κ− κ′)〈κ|R(π)|κ〉. (9)

Note that a π rotation of the 1/2 spinor always produces an orthogonal spinor to
the original one, which makes this matrix element vanish.

The experimental significance of the Berry’s phase of π was demonstrated by
McEuen et al. [33] in single-wall carbon nanotubes (SWCNTs), which are essentially
graphene rolled up into cylinders. The suppression of backscattering in metallic
SWCNTs leads to a remarkably long electron mean free path on the order of a
micron at room temperature [34].

The suppression of backward scattering can also be understood in terms of
the Berry’s phase induced by the pseudo spin rotation. In particular, for complete
backscattering, Eq. (5) yields R(2π) = eiπ, indicating that rotation in κ by 2π leads
to a change of the phase of the wave function |κ〉 by π. This non-trivial Berry’s
phase may lead to non-trivial quantum corrections to the conductivity in graphene,
where the quantum correction enhances the classical conductivity. This phenomena
is called “anti-localization” in contrast to such quantum corrections in a conven-
tional 2-dimensional (2D) system which lead to the suppression of conductivity in
a weak localization. This can simply be explained by considering each scattering
process with its corresponding complementary time-reversal scattering process. In
a conventional 2D electron system such as in GaAs heterojunctions, the scattering
amplitude and associated phase of each scattering process and its complementary
time-reversal process are equal. This constructive interference in conventional 2D
system leads to the enhancement of the backward scattering amplitude and thus
results in the localization of the electron states. This mechanism is known as weak
localization. In graphene, however, each scattering process and its time reversal
pair have a phase difference by π between them due to the non-trivial Berry phase,
stemming from 2π rotation of the pseudospin between the scattering processes of the
two time reversal pairs. This results in a destructive interference between the time
reversal pair to suppress the overal backward scattering amplitude, leading to a pos-
itive quantum correction in conductivity. These anti-weak localization phenomena
in graphene have been observed experimentally [35].

While the existence of a non-trivial Berry’s phase in graphene can be inferred
indirectly from the aforementioned experiments, it can be directly observed in the
quantum oscillations induced by a uniform external magnetic field [6, 7]. In a semi-
classical picture, the electrons orbit along a circle in k space when subjected to a
magnetic field. The Berry’s phase of π produced by the 2π rotation of the wave
vector manifests itself as a phase shift of the quantum oscillations, which will be the
focus of the discussion of the next section.

4 Berry Phase in Magneto-oscillations

We now turn to the massless Dirac fermion described by Hamiltonian in Eq. (1). In
a magnetic field, the Schrödinger equation is given by

±vF (P + eA) · σψ(r) = Eψ(r), (10)
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where P = −i~5, A is the magnetic vector potential, and ψ(r) is a two-component
vector

ψ(r) =

(
ψ1(r)
ψ2(r)

)
. (11)

Here we use the Landau gauge A: A = −Byx̂ for a constant magnetic field B
perpendicular to the x − y plane. Then, taking only the + sign in Eq. (10), this
equation relates ψ1(r) and ψ2(r):

vF (Px − iPy − eBy)ψ2(r) = Eψ1(r), (12)

vF (Px + iPy − eBy)ψ1(r) = Eψ2(r). (13)

Substituting the first to the second equations above, we obtain the equation for
ψ2(r) only

v2
F (P 2 − 2eByPx + e2B2y2 − ~eB)ψ2(r) = E2ψ2(r). (14)

The eigenenergies of Eq. (14) can be found by comparing this equation with a
massive carrier Landau system:

E2
n = 2n~eBv2

F , (15)

where n = 1, 2, 3... The constant −~eB shifts the LL’s by half of the equal spacing
between the adjacent LLs, and it also guarantees that there is a LL at E = 0, which
has the same degeneracy as the other LLs. Putting these expressions together, the
eigenenergy for a general LL can be written as [4]

En = sgn(n)
√

2e~v2
F |n|B, (16)

where n > 0 corresponds to electron-like LLs and n < 0 corresponds to hole-like
LLs. There is a single LL sitting exactly at E = 0, corresponding to n = 0, as a
result of the chiral symmetry and the particle-hole symmetry.

The square root dependence of the Landau level energy on n, En ∝
√
n, can be

understood if we consider the DOS for the relativistic electrons. The linear energy
spectrum of 2D massless Dirac fermions implies a linear DOS given by

N(E) =
E

2π~2v2
F

. (17)

In a magnetic field, the linear DOS collapses into LLs, each of which has the same
number of states 2eB/h. As the energy is increased, there are more states available,
so that a smaller spacing between the LLs is needed in order to have the same number
of state for each LL. A linear DOS directly results in a square root distribution of
the LLs, as shown in Fig. 3(c).

A wealth of information can be obtained by measuring the response of the 2D
electron system in the presence of a magnetic field. One such measurement is done
by passing current through the system and measuring the longitudinal resistivity
ρxx. As we vary the magnetic field, the energies of the LLs change. In particular ρxx
goes through one cycle of oscillations as the Fermi level moves from one LL DOS
peak to the next as shown in Fig. 3(c). These are the so called Shubinikov de-Haas
(SdH) oscillations. As we note in Eq. (15), the levels in a 2D massless Dirac fermion
system, such as graphene, are shifted by a half-integer relative to the conventional
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2D systems, which means that the SdH oscillations will have a phase shift of π,
compared with the conventional 2D system.

The phase shift of π is a direct consequence of the Berry’s phase associated with
the massless Dirac fermion in graphene. To further elucidate how the chiral nature
of an electron in graphene affects its motion, we resort to a semi-classical model
where familiar concepts, such as the electron trajectory, provide us a more intuitive
physical picture.

We consider an electron trajectory moving in a plane in a perpendicular mag-
netic field B. The basic equation for the semi-classical approach is

~k̇ = −e(v ×B), (18)

which simply says that the rate of change of momentum is equal to the Lorentz
force. The velocity v is given by

v =
1

~
5k ε , (19)

where ε is the energy of the electron. Since the Lorentz force is normal to v, no work
is done to the electron and ε is a constant of the motion. It immediately follows
that electrons move along the orbits given by the intersections of constant energy
surfaces with planes perpendicular to the magnetic fields.

Integration of Eq. (18) with respect to time yields

k(t)− k(0) =
−eB

~
(R(t)−R(0))× B̂, (20)

where R is the position of the electron in real space, and B̂ is the unit vector
along the direction of the magnetic field B. Since the cross product between R and

B̂ simply rotates R by 90◦ inside the plane of motion, Eq. (20) means that the
electron trajectory in real space is just its k-space orbit, rotated by 90◦ about B and
scaled by ~/eB.

It can be further shown that the angular frequency at which the electron moves
around the intersection of the constant energy surface is given by

ωc =
2πeB

~2

(
∂ak
∂ε

)−1

, (21)

where ak is the area of the intersection in the k-space. For electrons having an
effective mass m∗, we have ε = ~2k2/2m∗ and ak is given by πk2 = 2πm∗ε/~2, while
Eq. (21) reduces to ωc = eB/m∗. Comparing this equation with Eq. (21), we find

m∗ =
~2

2π

(
∂ak
∂ε

)
, (22)

which is actually the definition of the effective mass for an arbitrary orbit.
The quantization of the electron motion will restrict the available states and

will give rise to quantum oscillations such as SdH oscillations. The Bohr-Sommerfeld
quantization rule for a periodic motion is∮

p · dq = (n+ γ)2π~ , (23)
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where p and q are canonically conjugate variables, n is an integer and the integration
in Eq. (23) is for a complete orbit. The quantity γ will be discussed below.

For an electron in a magnetic field,

p = ~k− eA, q = R, (24)

so Eq. (23) becomes ∮
(~k− eA) · dR = (n+ γ)2π~ . (25)

Substituting this equation into Eq. (20) and using Stokes’ theorem, one finds

B ·
∮

R× dR−
∫
S

B · dS = (n+ γ)Φ0, (26)

where Φ0 = 2π~/e is the magnetic flux quanta. S is any surface in real space which
has the electron orbit as the projection on the plane. Therefore the second term on
the left hand side of Eq. (26) is just the magnetic flux −Φ penetrating the electron
orbit. A closer inspection of the first term on the left hand side of Eq. (26) finds
that it is 2Φ. Putting them together, Eq. (26) reduces to

Φ = (n+ γ)Φ0 , (27)

which simply means that the quantization rule dictates that the magnetic flux
through the electron orbit has to be quantized.

Remember that the electron trajectory in real space is just a rotated version
of its trajectory in k-space, scaled by ~/eB (Eq. (20)). Let ak(ε) be the area of the
electron orbit at constant energy ε in k-space; then Eq. (20) becomes

ak(εn) = (n+ γ)2πeB/~ , (28)

which is the famous Onsager relation. This relation implicitly specifies the permitted
energy levels εn (Landau Levels), which in general depend on the band structure
dispersion relation ε(k).

The dimensionless parameter 0 ≤ γ < 1 is determined by the shape of the energy
band structure. For a parabolic band, ε = ~2k2/2m∗, the nth LL has the energy
εn = (n+ 1/2)~ωc. Each LL orbit for an isotropic m∗ in the plane perpendicular to

the magnetic field B is a circle in k-space with a radius kn =
√

2eB(n+ 1/2)/~.
The corresponding area of an orbital in k-space for the nth LL is therefore

ak(εn) = πk2
n = (n+

1

2
)2πeB/~ . (29)

A comparison of this formula with Eq. (28) immediately yields

γ =
1

2
. (30)

For a massless Dirac fermion in graphene which obeys a linear dispersion relation
ε = ~vFk, the nth LL corresponds to a circular orbit with radius kn = εn/~vF =√

2e|n|B/~. The corresponding area is therefore

ak(εn) = πk2
n = |n|2πeB/~ . (31)
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This gives, for a semiclassical Shubnikov de Haas (SdH) phase,

γ = 0, (32)

which differs from the γ for the conventional massive fermion by 1
2
.

The difference of 1
2

in γ is a consequence of the chiral nature of the massless
Dirac fermions in graphene. An electron in graphene always has the pseudospin |sp〉
tied to its wave vector k. The electron goes through the orbit for one cycle, k, as
well as the pseudospin attached to the electrons. Both go through a rotation of 2π
at the same time. Much like a physical spin, a 2π adiabatic rotation of pseudospin
gives a Berry’s phase of π [5]. This is exactly where the 1

2
difference in γ comes from.

The above analysis can be generalized to systems with an arbitrary band struc-
ture. In general, γ can be expressed in terms of the Berry’s phase, φB, for the electron
orbit:

γ − 1

2
= − 1

2π
φB . (33)

For any electron orbits which surround a disconnected electronic energy band, as
is the case for a parabolic band, this phase is zero, and we arrive at Eq. (30). A
non-trivial Berry’s phase of π results if the orbit surrounds a contact between the
bands, and the energies of the bands separate linearly in k in the vicinity of the band
contact. In monolayer graphene, these requirements are fulfilled because the valence
band and conduction band are connected by K and K′, and the energy dispersion is
linear around these points. This special situation again leads to a γ = 0 in graphene
(in fact, γ = 0 and γ = ±1 are equivalent). Note that this non-trivial γ is only for
monolayer graphene; in contrast for bilayer graphene, whose band contact points
at the charge neutrality point have a quadratic dispersion relation, a conventional
γ = 1/2 is obtained.

γ can be probed experimentally by measuring the quantum oscillation of the 2D
system in the presence of a magnetic field, where γ is identified as the phase of such
oscillations. This becomes evident when we explicitly write the oscillatory part of
the quantum oscillations, e.g., as for the SdH oscillation of the electrical resistivity,
∆ρxx [7]

∆ρxx = R(B, T ) cos

[
2π

(
BF

B
− γ
)]

. (34)

Here we only take account of the first harmonic, in which R(B, T ) is the amplitude
of the SdH oscillations and BF is the frequency in units of 1/B, which can be related
to the 2D charge carrier density ns by

BF =
nsh

gse
, (35)

where gs = 4 accounts for the spin and valley degeneracies of the LLs. The relation
γ = 1/2 (for a parabolic band) and γ = 0 (for graphene) produces a phase difference
of π between the SdH oscillation in the two types of 2D systems. In the extreme
quantum limit, the SdH oscillations evolve into the quantum Hall effect, a remarkable
macroscopic quantum phenomenon characterized by a precisely quantized Hall resis-
tance and zeros in the longitudinal magneto-resistance. The additional Berry’s phase
of π manifests itself as a half-integer shift in the quantization condition, and leads
to an unconventional quantum Hall effect. In the quantum Hall regime, graphene
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thus exhibits a so-called “half-integer” shifted quantum Hall effect, where the fill-
ing fraction is given by ν = gs(n + 1/2) for integer n. Thus, at this filling fraction
ρxx = 0, while the Hall resistivity exhibits quantized plateaus at

ρ−1
xy =

e2

h
gs

(
n+

1

2

)
. (36)

Ω

Ω

Ω

Ω

Figure 3: Quantized magnetoresistance and Hall resistance of a graphene device. (a) Hall resistance
(black) and magnetoresistance (red) measured in a monolayer graphene device at T = 30 mK and
Vg = 15 V. The vertical arrows and the numbers on them indicate the values of B and the
corresponding filling factor ν of the quantum Hall states. The horizontal lines correspond to h/νe2

values. The QHE in the electron gas is demonstrated by at least two quantized plateaus in Rxy

with vanishing Rxx in the corresponding magnetic field regime. The inset shows the QHE for a
hole gas at Vg = −4 V, measured at 1.6 K. The quantized plateau for filling factor ν = 2 is well-
defined and the second and the third plateaus with ν = 6 and 10 are also resolved. (b) The Hall
resistance (black) and magnetoresistance (orange) as a function of gate voltage at fixed magnetic
field B = 9 T, measured at 1.6 K. The same convention as in (a) is used here. The upper inset shows
a detailed view of high filling factor Rxy plateaus measured at 30 mK. (c) A schematic diagram
of the Landau level density of states (DOS) and corresponding quantum Hall conductance (σxy)
as a function of energy. Note that in the quantum Hall states, σxy = −R−1

xy . The LL index n is
shown next to the DOS peak. In our experiment, the Fermi energy EF can be adjusted by the gate
voltage, and R−1

xy changes by an amount of gse
2/h as EF crosses a LL. Reproduced from Ref. [7].



12 P. Kim Séminaire Poincaré

The experimental observation of the quantum Hall effect and Berry’s phase in
graphene were first reported in Novoselov et al. [6] and Zhang et al. [7]. Figure 3a
shows Rxy and Rxx of a single layer graphene sample as a function of magnetic
field B at a fixed gate voltage Vg > VDirac. The overall positive Rxy indicates that
the contribution to Rxy is mainly from electrons. At high magnetic field, Rxy(B)
exhibits plateaus and Rxx is vanishing, which is the hallmark of the QHE. At least
two well-defined plateaus with values (2e2/h)−1 and (6e2/h)−1, followed by a de-
veloping (10e2/h)−1 plateau, are observed before the QHE features are transformed
into Shubnikov de Haas (SdH) oscillations at lower magnetic field. The quantization
of Rxy for these first two plateaus is better than 1 part in 104, with a precision
within the instrumental uncertainty. In recent experiments [36], this limit is now at
the accuracy of the 10−9 level. We observe the equivalent QHE features for holes
(Vg < VDirac) with negative Rxy values (Fig. 3a, inset). Alternatively, we can probe
the QHE in both electrons and holes by fixing the magnetic field and by changing
Vg across the Dirac point. In this case, as Vg increases, first holes (Vg < VDirac) and
later electrons (Vg > VDirac) are filling successive Landau levels and thereby exhibit
the QHE. This yields an antisymmetric (symmetric) pattern of Rxy (Rxx) in Fig. 3b,
with Rxy quantization accordance to

R−1
xy = ±gs(n+

1

2
)e2/h , (37)

where n is a non-negative integer, and +/- stands for electrons and holes, respec-
tively. This quantization condition can be translated to the quantized filling factor,
ν, in the usual QHE language. Here in the case of graphene, gs = 4, accounting for
2 by the spin degeneracy and 2 by the sub-lattice degeneracy, equivalent to the K
and K′ valley degeneracy under a magnetic field.

The observed QHE in graphene is distinctively different from the “conventional”
QHEs because of the additional half-integer in the quantization condition (Eq. (37)).
This unusual quantization condition is a result of the topologically exceptional elec-
tronic structure of graphene. The sequence of half-integer multiples of quantum Hall
plateaus has been predicted by several theories which combine “relativistic” Landau
levels with the particle-hole symmetry of graphene [37, 38, 39]. This can be easily
understood from the calculated LL spectrum (Eq. (16)) as shown in Fig. 3(c). Here
we plot the density of states (DOS) of the gs-fold degenerate (spin and sublattice)
LLs and the corresponding Hall conductance (σxy = −R−1

xy , for Rxx → 0) in the
quantum Hall regime as a function of energy. Here σxy exhibits QHE plateaus when
EF (tuned by Vg) falls between LLs, and jumps by an amount of gse

2/h when EF
crosses a LL. Time reversal invariance guarantees particle-hole symmetry and thus
σxy is an odd function in energy across the Dirac point [4]. However, in graphene,
the n = 0 LL is robust, i.e., E0 = 0 regardless of the magnetic field, provided that
the sublattice symmetry is preserved[4]. Thus the first plateaus of R−1

xy for electrons

(n = 1) and holes (n = −1) are situated exactly at gse
2/2h. As EF crosses the next

electron (hole) LL, R−1
xy increases (decreases) by an amount of gse

2/h, which yields
the quantization condition in Eq. (37).

A consequence of the combination of time reversal symmetry with the novel
Dirac point structure can be viewed in terms of Berry’s phase arising from the band
degeneracy point. A direct implication of Berry’s phase in graphene is discussed in
the context of the quantum phase of a spin-1/2 pseudo-spinor that describes the
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sublattice symmetry [5]. This phase is already implicit in the half-integer shifted
quantization rules of the QHE.

The linear energy dispersion relation also leads to a linearly vanishing 2D den-
sity of states near the charge neutrality point (CNP) at E = 0, ρ2D ∝ |εF |. This
differs from that for conventional parabolic 2D systems in which the density of
states, at least in the single particle picture, is constant, leading to a decrease in
the ability of charge neutral graphene to screen electric fields. Finally, the sublat-
tice symmetry endows the quasiparticles with a conserved quantum number and
chirality, corresponding to the projection of the pseudospin on the direction of mo-
tion [9]. In the absence of scattering which mixes the electrons in the graphene
valleys, pseudospin conservation forbids backscattering in graphene [5], momentum
reversal being equivalent to the violation of pseudospin conservation. This absence of
backscattering has been advanced as an explanation for the experimentally observed
unusually long mean free path of carriers in metallic as compared with semiconduct-
ing nanotubes [33].

5 Pseudospin and Klein Tunneling in graphene

The observation of electron and hole puddles in charge neutral, substrate supported
graphene confirmed theoretical expectations [42] that transport at charge neutrality
is dominated by charged impurity-induced inhomogeneities. The picture of transport
at the Dirac point is as a result of conducting puddles separated by a network of
p-n junctions. Understanding the properties of graphene p-n junctions is thus cru-
cial to quantitative understanding of the minimal conductivity, a problem that has
intrigued experimentalists and theorists alike [6, 42]. Describing transport in the in-
homogeneous potential landscape of the CNP requires introduction of an additional
spatially varying electrical potential into Eq. (1) in the previous section; transport
across a p-n junction corresponds to this varying potential crossing zero. Because
graphene carriers have no mass, graphene p-n junctions provide a condensed matter
analogue of the so called “Klein tunneling” problem in quantum electro-dynamics
(QED). The first part of this section will be devoted to the theoretical understanding
of ballistic and diffusive transport across such as barrier.

In recent years, substantial effort has been devoted to improving graphene sam-
ple quality by eliminating unintentional inhomogeneity. Some progress in this di-
rection has been made by both suspending graphene samples [43, 44] as well as by
transferring graphene samples to single crystal hexagonal boron nitride substrates
[45]. These techniques have succeeded in lowering the residual charge density present
at charge neutrality, but even the cleanest samples are not ballistic on length scales
comparable to the sample size (typically & 1 µm). An alterative approach is to try
to restrict the region of interest being studied by the use of local gates.

Graphene’s gapless spectrum allows the fabrication of adjacent regions of pos-
itive and negative doping through the use of local electrostatic gates. Such hetero-
junctions offer a simple arena in which to study the peculiar properties of graphene’s
massless Dirac charge carriers, including chirality [46, 9] and emergent Lorentz in-
variance [48]. Technologically, graphene p-n junctions are relevant for various elec-
tronic devices, including applications in conventional analog and digital circuits as
well as novel electronic devices based on electronic lensing. In the latter part of this
review, we will discuss current experimental progress towards such gate-engineered
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coherent quantum graphene devices.
The approach outlined in the previous section requires only small modifica-

tions to apply the approach to the case of carrier transport across graphene het-
erojunctions. While the direct calculation for the case of graphene was done by
Katsnelson et al. [9], a similar approach taking into account the chiral nature of
carriers was already discussed a decade ago in the context of electrical conduction
in metallic carbon nanotubes [5]. In low dimensional graphitic systems, the free par-
ticle states described by Eq. (1) are chiral, meaning that their pseudospin is parallel
(antiparallel) to their momentum for electrons (holes). This causes a suppression of
backscattering in the absence of pseudospin-flip nonconserving processes, leading to
the higher conductances of metallic over semiconducting carbon nanotubes [33]. To
understand the interplay between this effect and Klein tunneling in graphene, we
introduce external potentials A(r) and U(r) in the Dirac Hamiltonian,

Ĥ = vFσ · (−i~∇− eA(r)) + U(r). (38)

In the case of a 1-dimensional (1D) barrier, U(r) = U(x), at zero magnetic
field, and the momentum component parallel to the barrier, py, is conserved. As a
result, electrons normally incident on a graphene p-n junction are forbidden from
scattering obliquely by the symmetry of the potential, while chirality forbids them
from scattering directly backwards: the result is perfect transmission as holes [9],
and this is what is meant by Klein tunneling in graphene (see (Fig. 4) (a)). The rest
of this review is concerned with gate induced p-n junctions in graphene; however, the
necessarily transmissive nature of graphene p-n junctions is crucial for understanding
the minimal conductivity and supercritical Coulomb impurity problems in graphene,
as well as playing a role in efforts to confine graphene quantum particles. Moreover,
p-n junctions appear in the normal process of contacting and locally gating graphene,
both of which are indispensable for electronics applications.

Even in graphene, an atomically sharp potential cannot be created in a realistic
sample. Usually, the distance to the local gate, which is isolated from the graphene
by a thin dielectric layer determines the length scale on which the potential varies.
The resulting transmission problem over a Sauter-like potential step in graphene was
solved by Cheianov and Fal’ko [46]. Substituting the Fermi energy for the potential
energy difference ε − U(x) = ~vfkf (x) and taking into account the conservation of
the momentum component py = ~kF sin θ parallel to the barrier, they obtained a
result, valid for θ � π/2, that is nearly identical to that of Sauter [47]:

kF (x) =

 −kF/2 x < 0,
Fx 0 ≤ x ≤ L,
kF/2 x > L.

|T |2 ∼ e
−2π2 hvF

Fλ2
F

sin2 θ
, (39)

As in the massive relativistic problem in one-dimension, the transmission is
determined by evanescent transport in classically forbidden regions where kx(x)2 =
kF (x)2 − p2

y < 0 (Fig.4 ). The only differences between the graphene case and the
one dimensional, massive relativistic case are the replacement of the speed of light
by the graphene Fermi velocity, the replacement of the Compton wavelength by the
Fermi wavelength, and the scaling of the mass appearing in the transmission by
the sine of the incident angle. By considering different angles of transmission in the
barrier problem in two dimensional graphene, then, one can access both the Klein
and Sauter regimes of T ∼ 1 and T � 1.
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Figure 4: Potential landscape and angular dependence of quasiparticle transmission through (a) an
atomically sharp pnp barrier and (b) an electrostatically generated smooth pnp barrier in graphene,
with their respective angle-dependent transmission probabilities |T |2. Red and blue lines correspond
to different densities in the locally gated region.

The current state of the experimental art in graphene does not allow for injection
of electrons with definite py [8, 49]. Instead, electrons impinging on a p-n junction
have a random distribution of incident angles due to scattering in the diffusive
graphene leads. Equation 39 implies that in realistically sharp p-n junctions, these
randomly incident electrons emerge from the p-n junction as a collimated beam, with
most off-normally incident carriers being scattered; transmission through multiple p-
n junctions leads to further collimation. Importantly, even in clean graphene, taking
into account the finite slope of the barrier yields qualitatively different results for
the transmission: just as in the original Klein problem, the sharp potential step [9]
introduces pathologies—in the case of graphene, high transmission at θ 6= 0—which
disappear in the more realistic treatment [46].

Transport measurements across single p-n junctions, or a pnp junction in which
transport is not coherent, can at best provide only indirect evidence for Klein tun-
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neling by comparison of the measured resistance of the p-n junction. Moreover,
because such experiments probe only incident-angle averaged transmission, they
cannot experimentally probe the structure T (θ). Thus, although the resistance of
nearly ballistic p-n junctions are in agreement with the ballistic theory, to show that
angular collimation occurs, or that there is perfect transmission at normal incidence,
requires a different experiment. In particular, there is no way to distinguish perfect
transmission at θ = 0 from large transmission at all angles, begging the question
of whether “Klein tunneling” has any observable consequences outside the context
of an angle resolved measurement or its contribution to bulk properties such as the
minimal conductivity. In fact, as was pointed out by Shytov et al. [50], an experi-
mental signature of this phenomenon should manifest itself as a sudden phase shift
at finite magnetic field in the transmission resonances in a ballistic, phase coherent,
graphene pnp device.

Although graphene p-n junctions are transmissive when compared with p-n
junctions in gapfull materials (or gapless materials in which backscattering is al-
lowed, such as bilayer graphene), graphene p-n junctions are sufficiently reflective,
particularly for obliquely incident carriers, to cause transmission resonances due to
Fabry-Perot interference. However, in contrast to the canonical example from optics,
or to one dimensional electronic analogues, the relative phase of interfering paths in
a ballistic, phase coherent pnp (or npn) graphene heterojunction can be tuned by
applying a magnetic field. For the case where the junction width is only somewhat
shorter than the mean free path in the local gate region (LGR), L . `LGR, the
Landauer formula for the oscillating part of the conductance trace can be derived
from the ray tracing diagrams in Fig. 5(d),

Gosc = e−2L/lLGR
4e2

h

∑
ky

2|T+|2|T−|2R+R− cos (θWKB) , (40)

in which T± and R± are the transmission and reflection amplitudes at x = ±L/2,
θWKB is the semiclassical phase difference accumulated between the junctions by
interfering trajectories, and `LGR is a fitting parameter which controls the amplitude
of the oscillations.

At zero magnetic field, particles are incident at the same angle on both junc-
tions, and the Landauer sum in Eq. (40) is dominated by the modes for which both
transmission and reflection are nonnegligible, so neither normal nor highly oblique
modes contribute. Instead, the sum is dominated by modes with finite ky, peaked

about ky = ±
√
F/(ln (3/2)π~vF ), where F is the electric force in the pn junction

region. As the magnetic field increases, cyclotron bending favors the contribution
of modes with ky = 0, which are incident on the junctions at angles with the same
magnitude but opposite sign (Fig. 5(c)). If perfect transmission at zero angle exists,
then analyticity of the scattering amplitudes demands that the reflection ampli-
tude changes sign as the sign of the incident angle changes [50], thereby causing
a π shift in the reflection phase. This effect can also be described in terms of the
Berry phase: the closed momentum space trajectories of the modes dominating the
sum at low field and high ky do not enclose the origin, while those at intermediate
magnetic fields and ky ∼ 0 do. As a consequence, the quantization condition lead-
ing to transmission resonances is different due to the inclusion of the Berry phase
when the trajectories surround the topological singularity at the origin, leading to
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a phase shift in the observed conductance oscillations as the phase shift containing
trajectories begin to dominate the Landauer sum in Eq. (40).

Experimental realization of the coherent electron transport in pnp (as well as
npn) graphene heterojunctions was reported by Young and Kim [8]. The key ex-
perimental innovations were to use an extremely narrow (. 20 nm wide) top gate,
creating a Fabry Perot cavity between p-n junctions smaller than the mean free
path, which was ∼ 100 nm in the samples studied. Figure 5(a) shows the layout
of a graphene heterojunction device controlled by both top gate voltage (VTG) and
back gate voltage (VBG). The conductance map shows clear periodic features in the
presence of p-n junctions; these features appear as oscillatory features in the con-
ductance as a function of VTG at fixed VBG (Fig. 5(b)). For the electrostatics of
the devices presented in this device, the magnetic field at which this π phase shift,
due to the Berry phase at the critical magnetic field discussed above, is expected to
occur in the range B∗ = 2~ky/eL ∼250–500 mT, in agreement with experimental
data which show an abrupt phase shift in the oscillations at a few hundred mT
(Fig. 5(f)). Experiments can be matched quantitatively to the theory by calculation
of Eq. (40) for the appropriate potential profile, providing confirmation of the Klein
tunneling phenomenon in graphene. As the magnetic field increases further, the bal-
listic theory predicts the disappearance of the Fabry-Perot conductance oscillations
as the cyclotron radius shrinks below the distance between p-n junctions, Rc . L,
or B∼2 T for our devices (Fig. 5(e)). The qualitative understanding of these behav-
iors can be explained in the semiclassical way (Fig. 5(c)): with increasing B, the
dominant modes at low magnetic field (blue) give way to phase-shifted modes with
negative reflection amplitude due to the inclusion of the non-trivial Berry phase
(orange), near ky = 0. The original finite ky modes are not yet phase shifted at the
critical magnetic field Bc, above which the non-trivial Berry phase shift π (green)
appears. But owing to collimation, these finite ky modes no longer contribute to the
oscillatory conductance.

There is an apparent continuation of the low magnetic field Fabry-Perot (FP)
oscillations to Shubnikov-de Haas (SdH) oscillations at high magnetic fields. Gener-
ally, the FP oscillations tend to be suppressed at high magnetic fields as the cyclotron
orbits get smaller than the junction size. On the other hand, disorder mediated SdH
oscillations become stronger at high magnetic field owing to the large separation
between Landau levels. The observed smooth continuation between these two os-
cillations does not occur by chance. FP oscillations at magnetic fields higher than
the phase shift are dominated by trajectories with ky = 0; similarly, SdH oscilla-
tions, which can be envisioned as cyclotron orbits beginning and ending on the same
impurity, must also be dominated by ky = 0 trajectories. The result is a seamless
crossover from FP to SdH oscillations. This is strongly dependent on the disorder
concentration: for zero disorder, SdH oscillations do not occur, while for very strong
disorder SdH oscillations happen only at high fields and FP oscillations do not occur
due to scattering between the p-n junctions. For low values of disorder, such that
SdH oscillations appear at fields much smaller than the phase shift magnetic field,
Bc, the two types of coherent oscillations could in principle coexist with different
phases. The role of disorder in the FP-SdH crossover has only begun to be addressed
experimentally [8].
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Figure 5: (a) Scanning electron microscope image of a typical graphene heterojunction device.
Electrodes, graphene and top gates are represented by yellow, purple and cyan, respectively. (b) A
differential transconductance map of the device as a function of densities n2 and n1, corresponding
to the locally gated region (LGR) and out side the LGR, i.e. graphene lead (GL) region, respectively.
Interference fringes appear in the presence of pn junctions, which define the Fabry-Perot cavity. (c)
Inset: Conductance map of the device in the back gate and top gate voltages (VBG-VTG) plane.
The main panels show cuts through this color map in the regions indicated by the dotted lines in
the inset, showing the conductance as a function of VTG at fixed VBG. Traces are separated by
a step in VBG of 1 V, starting from 80V with traces taken at integer multiples of 5 V in black.
(d) Schematic diagram of trajectories contributing to quantum oscillations in real and momentum
space. (e) Magnetic-field and density dependence of the transconductance dG/dn2 for n1 > 0
is fixed. Note that the low field oscillatory features from FP resonance only appear for n2 < 0
where there is pnp junction forms. (f) Oscillating part of the conductance at VBG =50 V for low
fields. Gosc as extracted from the experimental data over a wide range of densities and magnetic
fields (left) matches the behavior predicted by a theory containing the phase shift due to Klein
tunneling [50] (right). Reproduced from Ref. [8].

6 Conclusions

In this chapter, we discuss the role of pseudospin in electronic transport in graphene.
We demonstrate a variety of new phenomena which stem from the effectively rela-
tivistic nature of the electron dynamics in graphene, where the pseudospin is aligned
with two-dimensional momentum. Our main focus were two major topics: (i) the non-
conventional, half-integer shifted filling factors for the quantum Hall effect (QHE)
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and the peculiar magneto-oscillation where one can directly probe the existence of
a non-trivial Berry’s phase, and (ii) Klein tunneling of chiral Dirac fermions in a
graphene lateral heterojunction.

Employing unusual filling factors in QHE in single layer graphene samples as
an example, we demonstrated that the observed quantization condition in graphene
is described by half integer rather than integer values, indicating the contribution of
the non-trivial Berry’s phase. The half-integer quantization, as well as the measured
phase shift in the observed magneto-oscillations, can be attributed to the peculiar
topology of the graphene band structure with a linear dispersion relation and a
vanishing mass near the Dirac point, which is described in terms of effectively “rela-
tivistic” carriers as shown in Eq. (1). The unique behavior of electrons in this newly
discovered (2 + 1)-dimensional quantum electrodynamics system not only opens up
many interesting questions in mesoscopic transport in electronic systems with non-
zero Berry’s phase but may also provide the basis for novel carbon based electronics
applications.

The development and current status of electron transport in graphene hetero-
junction structures were also reviewed. In these lateral heterojunction devices, the
unique linear energy dispersion relation and concomitant pseudospin symmetry are
probed via the use of local electrostatic gates. Mimicking relativistic quantum parti-
cle dynamics, electron waves passing between two regions of graphene with different
carrier densities will undergo strong refraction at the interface, producing an experi-
mental realization of the century-old Klein tunneling problem of relativistic quantum
mechanics. Many theoretical and experimental discussions were presented here, in-
cluding the peculiar graphene p-n and pnp junction conduction in the diffusive and
ballistic regimes. Since electrons are charged, a magnetic field can couple to them
and magnetic field effects can be studied. In particular, in a coherent system, the
electron waves can also interfere, producing quantum oscillations in the electrical
conductance, which can be controlled through the application of both electric and
magnetic fields. A clear indication of a phase shift of π in the magnetoconductance
clearly indicates again the existence of a non-trivial Berry’s phase associated with
the pseudo-spin rotation during the Klein tunneling process.
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