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1 Introduction

On anyone’s list of the supreme achievements of the nineteenth-century science,
both Maxwell’s equations and the second law of thermodynamics surely rank high.
Yet while Maxwell’s equations are widely viewed as done, dusted, and uncontro-
versial, the second law still provokes lively arguments, long after Carnot published
his Reflections on the Motive Power of Fire (1824) and Clausius articulated the
increase of entropy (1865). The puzzle at the core of the second law is this : how can
microscopic equations of motion that are symmetric with respect to time-reversal
give rise to macroscopic behavior that clearly does not share this symmetry ? Of
course, quite apart from questions related to the origin of “time’s arrow”, there is
a nuts-and-bolts aspect to the second law. Together with the first law, it provides a
set of tools that are indispensable in practical applications ranging from the design
of power plants and refrigeration systems to the analysis of chemical reactions.

The past few decades have seen growing interest in applying these laws and
tools to individual microscopic systems, down to nanometer length scales. Much
of this interest arises at the intersection of biology, chemistry and physics, where
there has been tremendous progress in uncovering the mechanochemical details of
biomolecular processes. [1] For example, it is natural to think of the molecular com-
plex φ29 – a motor protein that crams DNA into the empty shell of a virus – as a
nanoscale machine that generates torque by consuming free energy. [2] The deve-
lopment of ever more sophisticated experimental tools to grab, pull, and otherwise
bother individual molecules, and the widespread use of all-atom simulations to study
the dynamics and the thermodynamics of molecular systems, have also contributed
to the growing interest in the “thermodynamics of small systems”, as the field is
sometimes called. [3]

Since the rigid, prohibitive character of the second law emerges from the sta-
tistics of huge numbers, we might expect it to be enforced somewhat more leniently
in systems with relatively few degrees of freedom. To illustrate this point, consider
the familiar gas-and-piston setup, in which the gas of N ∼ 1023 molecules begins
in a state of thermal equilibrium, inside a container enclosed by adiabatic walls. If
the piston is rapidly pushed into the gas and then pulled back to its initial location,
there will be a net increase in the internal energy of the gas. That is,

W > 0, (1)



78 C. Jarzynski Séminaire Poincaré

where W denotes the work performed by the agent that manipulates the piston. This
inequality is not mandated by the underlying dynamics : there certainly exist micro-
scopically viable N -particle trajectories for which W < 0. However, the probability
to observe such trajectories becomes fantastically small for large N . By contrast,
for a “gas” of only a few particles, we would not be surprised to observe – once in a
rare while, perhaps – a negative value of work, though we still expect Eq. 1 to hold
on average :

〈W 〉 > 0. (2)

The angular brackets here and below denote an average over many repetitions of
this hypothetical process, with the tiny sample of gas re-equilibrated prior to each
repetition.

This example suggests the following perspective : as we apply the tools of ther-
modynamics to ever smaller systems, the second law becomes increasingly blurred.
Inequalities such as Eq. 1 remain true on average, but statistical fluctuations around
the average become ever more important as fewer degrees of freedom come into play.

This picture, while not wrong, is incomplete. It encourages us to dismiss the
fluctuations in W as uninteresting noise that merely reflects poor statistics (small
N). As it turns out, these fluctuations themselves satisfy rather strong, interesting
and useful laws. For example, Eq. 2 can be replaced by the equality,

〈e−W/kBT 〉 = 1, (3)

where T is the temperature at which the gas is initially equilibrated, and kB is
Boltzmann’s constant. If we additionally assume that the piston is manipulated in
a time-symmetric manner, e.g. pushed in at a constant speed and then pulled out
at the same speed, then the statistical distribution of work values ρ(W ) satisfies the
symmetry relation

ρ(+W )

ρ(−W )
= eW/kBT . (4)

The validity of these results depends neither on the number of molecules in the gas,
nor (surprisingly !) on the rate at which the process is performed.

I have used the gas and piston out of convenience and familiarity, but the
predictions illustrated here by Eqs. 3 and 4 – and expressed more generally by Eqs. 15
and 30 below – are not specific to this particular example. They apply to any system
that is driven away from equilibrium by the variation of mechanical parameters,
under relatively standard assumptions regarding the initial equilibrium state and
the microscopic dynamics. Moreover, they belong to a larger collection of recently
derived theoretical predictions, which pertain to fluctuations of work, [4, 5, 6, 7, 8, 9]
entropy production, [10, 11, 12, 13, 14, 15, 16, 17, 18] and other quantities [19, 20] in
systems far from thermal equilibrium. While these predictions go by various names,
both descriptive and eponymous, the term fluctuation theorems has come to serve
as a useful label encompassing the entire collection of results. There is by now a
large body of literature on fluctuation theorems, including reviews and pedagogical
treatments. [21, 22, 23, 24, 25, 26, 3, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38]

In my view these are not results that one might naturally have obtained, by star-
ting with a solid understanding of macroscopic thermodynamics and extrapolating
down to small system size. Rather, they reveal genuinely new, nanoscale features of
the second law. My aim in this review is to elaborate on this assertion. Focusing
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on those fluctuation theorems that describe the relationship between work and free
energy – these are sometimes called nonequilibrium work relations – I will argue that
they have refined our understanding of dissipation, hysteresis, and other hallmarks
of thermodynamic irreversibility. Most notably, when fluctuations are taken into ac-
count, inequalities that are related to the second law (e.g. Eqs. 5, 24, 28, 35) can be
rewritten as equalities (Eqs. 15, 25, 30, 31). Among the “take-home messages” that
emerge from these developments are the following :

– Equilibrium information is subtly encoded in the microscopic response of a
system driven far from equilibrium.

– Surprising symmetries lurk beneath the strong hysteresis that characterizes
irreversible processes.

– Physical measures of dissipation are related to information-theoretic measures
of irreversibility.

– The ability of thermodynamics to set the direction of time’s arrow can be
quantified.

Moreover, these results have practical applications in computational thermodyna-
mics and in the analysis of single-molecule manipulation experiments, as discussed
briefly in Section 8.

Section 2 of this review introduces definitions and notation, and specifies the
framework that will serve as a paradigm of a thermodynamic process. Sections 3 -
6 address the four points listed above, respectively. Section 7 discusses how these
results relate to fluctuation theorems for entropy production. Finally, I conclude in
Section 8.

2 Background and Setup

This section establishes the basic framework that will be considered, and intro-
duces the definitions and assumptions to be used in later sections.

2.1 Macroscopic thermodynamics and the Clausius inequality

Throughout this review, the following will serve as a paradigm of a nonequili-
brium thermodynamic process.

Consider a finite, classical system of interest in contact with a thermal reservoir
at temperature T (e.g. a rubber band surrounded by air), and let λ denote some
externally controlled parameter of the system (the length of the rubber band). I
will refer to λ as a work parameter, since by varying it we perform work on the
system. The notation [λ, T ] will specify an equilibrium state of the system. Now
imagine that the system of interest is prepared in equilibrium with the reservoir, at
fixed λ = A, that is in state [A, T ]. Then from time t = 0 to t = τ the system is
perturbed, perhaps violently, by varying the parameter with time, ending at a value
λ = B. (The rubber band is rapidly stretched.) Finally, from t = τ to t = τ ∗ the
work parameter is held fixed at λ = B, allowing the system to re-equilibrate with
the thermal reservoir and thus relax to the state [B, T ].

In this manner the system is made to evolve from one equilibrium state to
another, but in the interim it is generally driven away from equilibrium. The Clausius
inequality of classical thermodynamics [39] then predicts that the external work
performed on the system will be no less than the free energy difference between the
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terminal states :
W ≥ ∆F ≡ FB,T − FA,T (5)

Here Fλ,T denotes the Helmholtz free energy of the state [λ, T ]. When the parameter
is varied slowly enough that the system remains in equilibrium with the reservoir at
all times, then the process is reversible and isothermal, and W = ∆F .

Eq. 5 is the essential statement of the second law of thermodynamics that will
apply in Sections 3 - 6 of this review. Of course, not all thermodynamic processes
fall within this paradigm, nor is Eq. 5 the broadest formulation of the Clausius in-
equality. However, since complete generality can impede clarity, I will focus on the
class of processes described above. Most of the results presented in the following
sections apply also to more general thermodynamic processes – such as those invol-
ving multiple thermal reservoirs or nonequilibrium initial states – as I will briefly
mention in Section 7.

Three comments are now in order, before moving down to the nanoscale.
(1) As the system is driven away from equilibrium, its temperature may change

or become ill-defined. The variable T , however, will always denote the initial tem-
perature of the system and thermal reservoir.

(2) No external work is performed on the system during the re-equilibration
stage, τ < t < τ ∗, as λ is held fixed. In this sense the re-equilibration stage is
somewhat superfluous : Eq. 5 remains valid if the process is considered to end at
t = τ – even if the system has not yet re-equilibrated with the reservoir ! – provided
we always define ∆F to be a free energy difference between the equilibrium states
[A, T ] and [B, T ].

(3) While in general it is presumed that the system remains in thermal contact
with the reservoir for 0 < t < τ , the results discussed in this review are also valid if
the system is isolated from the reservoir during this interval.

2.2 Microscopic definitions of work and free energy

Now let us “scale down” this paradigm to small systems, with an eye toward
incorporating statistical fluctuations. Consider a framework in which the system of
interest and the thermal reservoir are represented as a large collection of microsco-
pic, classical degrees of freedom. The work parameter λ is an additional coordinate
describing the position or orientation of a body – or some other mechanical variable
such as the location of a laser trap in a single-molecule manipulation experiment [27]
– that interacts with the system of interest, but is controlled by an external agent.
This framework is illustrated with a toy model in Fig. 1. Here the system of interest
consists of the three particles represented as open circles, whose coordinates zi give
distances from the fixed wall. The work parameter is the fourth particle, depicted
as a shaded circle at a distance λ from the wall.

Let the vector x denote a microscopic state of the system of interest, that is
the configurations and momenta of its microscopic degrees of freedom ; and let y
similarly denote a microstate of the thermal reservoir. The Hamiltonian for this
collection of classical variables is assumed to take the form

H(x,y;λ) = H(x;λ) +Henv(y) +Hint(x,y) (6)

where H(x;λ) represents the energy of the system of interest – including its interac-
tion with the work parameter – Henv(y) is the energy of the thermal environment,
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Figure 1 – Illustrative model. The numbered circles constitute a three-particle system of interest,
with coordinates (z1, z2, z3) giving the distance of each particle from the fixed wall, as shown for
z1. The shaded particle is the work parameter, whose position λ is manipulated externally. The
springs represent particle-particle (or particle-wall) interactions. The system of interest interacts
with a thermal reservoir whose degrees of freedom are not shown.

and Hint(x,y) is the energy of interaction between system and environment. For the
toy model in Fig. 1, x = (z1, z2, z3, p1, p2, p3) and we assume

H(x;λ) =
3∑
i=1

p2
i

2m
+

3∑
k=0

u(zk+1 − zk) (7)

where u(·) is a pairwise interaction potential, z0 ≡ 0 is the position of the wall, and
z4 ≡ λ is the work parameter.

Now imagine a process during which the external agent manipulates the work
parameter according to a protocol λ(t). As the parameter is displaced by an amount
dλ, the change in the value of H due to this displacement is

d̄W ≡ dλ
∂H

∂λ
(x;λ) (8)

Since dλ · ∂H/∂λ is the work required to displace the coordinate λ against a force
−∂H/∂λ, we interpret Eq. 8 to be the work performed by the external agent in
effecting this small displacement. [40] Over the entire process, the work performed
by the external agent is :

W =

∫
d̄W =

∫ τ

0

dt λ̇
∂H

∂λ
(x(t);λ(t)) (9)

where the trajectory x(t) describes the evolution of the system of interest. This will
be the microscopic definition of work that will be used throughout this review. (For
discussions and debates related to this definition, see Refs. [40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 37].)
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Let us now focus on the free energy difference ∆F appearing in Eq. 5. In statis-
tical physics an equilibrium state is represented by a probability distribution rather
than by a single microscopic state. If the interaction energy Hint in Eq. 6 is suffi-
ciently weak – as usually assumed in textbook discussions of macroscopic systems –
then this distribution is given by the Boltzmann-Gibbs formula,

peq
λ,T (x) =

1

Zλ,T
exp[−H(x;λ)/kBT ] (10)

where

Zλ,T =

∫
dx exp[−H(x;λ)/kBT ] (11)

is the classical partition function. If Hint is too large to be neglected, then the
equilibrium distribution takes the modified form

peq
λ,T ∝ exp(−H∗/kBT ) , H∗(x;λ) = H(x;λ) + φ(x;T ) (12)

where φ(x;T ) is the free-energetic cost of inserting the system of interest into its
thermal surroundings, e.g. associated with the rearrangement of water required to
accommodate the presence of a biomolecule. For purpose of this review, the dis-
tinction between Eqs. 10 and 12 is not terribly relevant. I will use the more familiar
Eq. 10, which applies to the weak-coupling limit (small Hint), with the understanding
that all the results discussed below are equally valid in the case of strong coupling,
provided H is replaced by H∗. See Ref. [50] for a more detailed discussion. The free
energy associated with this equilibrium state is

Fλ,T = −kBT lnZλ,T (13)

With these elements in place, imagine a microscopic analogue of the process
described in Sec. 2.1. The system of interest is prepared in equilibrium with the
reservoir, at λ = A. From t = 0 to t = τ the system evolves with time as the work
parameter is varied from λ(0) = A to λ(τ) = B. By considering infinitely many
repetitions of this process, we arrive at a statistical ensemble of realizations of the
process, which can be pictured as a swarm of independently evolving trajectories,
x1(t), x2(t), · · · . For each of these we can compute the work, W1, W2, · · · (Eq. 9).
Letting ρ(W ) denote the distribution of these work values, it is reasonable to expect
that Eq. 5 in this case becomes a statement about the mean of this distribution,
namely

〈W 〉 ≡
∫

dW ρ(W )W ≥ ∆F. (14)

As suggested earlier, this inequality is correct but it is not the entire story.

2.3 The need to model

Although the laws of macroscopic thermodynamics can be stated without re-
ference to underlying equations of motion, when we study how these laws might
apply to a microscopic system away from equilibrium we must typically specify
the equations we use to model its evolution. These equations represent approxi-
mations of physical reality, and the choice inevitably reflects certain assumptions.
Eq. 6 suggests one approach : treat the system and reservoir as an isolated, classical
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system evolving in the full phase space (x,y) under a time-dependent Hamiltonian
H(x,y;λ(t)). The results discussed in Sections 3 - 6 can all be obtained within
this framework. Alternatively, we can treat the reservoir implicitly, by writing down
effective equations of motion for just the system variables, x. Examples include Lan-
gevin dynamics, the Metropolis algorithm, Nosé-Hoover dynamics and its variants,
the Andersen thermostat, and deterministic equations based on Gauss’s principle
of least constraint. [23, 34] As with the Hamiltonian approach, the results discus-
sed below can be derived for each of these model dynamics. This suggests that the
results themselves are rather robust : they do not depend sensitively on how the
microscopic dynamics are modeled.

Since the aim of this review is to describe what the second law of thermodyna-
mics “looks like” in the presence of fluctuations, full-blown derivations of fluctuation
theorems and work relations will not be provided. However, in Sections 3 and 4, in
addition to describing various work relations and their connections to the second
law, I will sketch how several of them can be derived for the toy system shown
in Fig. 1, in the physical context mentioned by the final comment in Section 2.1 :
the system is thermally isolated during the interval 0 < t < τ . The aim here is to
convey some idea of the theoretical foundations of these results, without exploring
the technical details that accompany an explicit treatment of the reservoir. [50]

3 Equilibrium information from nonequilibrium fluctuations

Thermodynamics accustoms us to the idea that irreversible processes are descri-
bed by inequalities, such as W ≥ ∆F . One of the surprises of recent years is that if
we pay attention to fluctuations, then such relationships can be recast as equalities.
In particular, the nonequilibrium work relation [6, 7] states that

〈e−W/kBT 〉 = e−∆F/kBT , (15)

where (as above) T is the initial temperature of the system and thermal reservoir,
and angular brackets denote an ensemble average over realizations of the process.
This result has been derived in various ways, using an assortment of equations of
motion to model the microscopic dynamics [6, 7, 8, 17, 18, 9, 51, 52, 50, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63], and has been confirmed experimentally. [64, 65, 66, 67]
In the following paragraph I will sketch how it can be obtained for the toy model of
Fig. 1.

Imagine that after preparing the system in equilibrium at λ = A we disconnect
it from the thermal reservoir. Then from t = 0 to t = τ the three-particle system
of interest evolves under the Hamiltonian H(x;λ(t)) (Eq. 7) as we displace the
fourth particle from λ = A to B using a protocol λ(t). A realization of this process
is described by a trajectory xt ≡ x(t) obeying Hamilton’s equations. Combining
Eq. 9 with the identity dH/dt = ∂H/∂t (see Ref. [68], section 8-2), we get W =
H(xτ ;B) − H(x0;A). We then evaluate the left side of Eq. 15 by averaging over
initial conditions, using Eq. 10 :

〈e−W/kBT 〉 =

∫
dx0 p

eq
A,T (x0) e−W/kBT

=
1

ZA,T

∫
dxτ

∣∣∣∣∂xτ∂x0

∣∣∣∣−1

e−H(xτ ;B)/kBT =
ZB,T
ZA,T

. (16)
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On the second line, the variables of integration have been changed from initial
conditions to final conditions. By Liouville’s theorem, the associated Jacobian factor
is unity, |∂xτ/∂x0| = 1, which brings us to the desired result, ZB,T/ZA,T = e−∆F/kBT

(Eq. 13). (Note that the system is generally out of equilibrium at t = τ ; see comment
(2) at the end of Section 2.1.)

This gist of the calculation can be extended to the more general case in which
the system and reservoir remain in contact during the interval 0 < t < τ [6, 50].
The steps are essentially the ones in Eq. 16, only carried out in the full phase space
(x,y), and care must be taken if the interaction energy Hint(x,y) is strong. [50] For
derivations of Eq. 15 in which the presence of the reservoir is modeled implicitly,
using non-Hamiltonian equations of motion, see Refs. [6, 7, 8, 17, 18, 52, 55, 53, 54,
56, 57, 58, 59, 60, 61, 62, 63, 32].

Recall that the work performed during a reversible, isothermal process depends
only on the initial and final states, W = ∆F ≡ FB,T −FA,T , and not on the sequence
of equilibrium states that mark the journey from [A, T ] to [B, T ]. The nonequilibrium
work relation extends this statement to irreversible processes :

−kBT ln〈e−W/kBT 〉 = ∆F. (17)

That is, the value of the nonlinear average on the left depends only on equilibrium
states [A, T ] and [B, T ] (since these determine ∆F ), and not on the intermediate,
out-of-equilibrium states visited by the system. This implies that we can determine
an equilibrium free energy difference by observing a system driven away from equili-
brium, provided we repeat the process many times : the value of ∆F is to be found
not in a single measurement of work, but in its statistical fluctuations. The idea
that far-from-equilibrium fluctuations encode useful equilibrium information is fur-
ther extended by Eqs. 25, 30 and 31 below, but before getting to those results I will
briefly draw attention to a few points related to Eq. 15.

First, Eq. 15 is closely related, but not equivalent, to an earlier work relation
derived by Bochkov and Kuzovlev [4, 5, 69, 70], which can be written as

〈e−W0/kBT 〉 = 1. (18)

This result does not involve ∆F , and uses a definition of work that differs from
Eq. 9. Refs. [42, 71, 32] contain a more detailed discussion of the precise relationship
between Eqs. 15 and 18, as well as between Eqs. 25, 30, and their counterparts in
Refs. [4, 5, 69, 70].

With minimal effort we can use Eq. 15 to obtain two inequalities that are clo-
sely related to the second law of thermodynamics. Combining Eq. 15 with Jensen’s
inequality, [72] 〈expx〉 ≥ exp〈x〉, we get

〈W 〉 ≥ ∆F, (19)

as already anticipated (Eq. 14). A stronger and less expected result follows almost
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as immediately from Eq. 15 : [31]

P [W < ∆F − ζ] ≡
∫ ∆F−ζ

−∞
dW ρ(W )

≤
∫ ∆F−ζ

−∞
dW ρ(W ) e(∆F−ζ−W )/kBT

≤ e(∆F−ζ)/kBT
∫ +∞

−∞
dW ρ(W ) e−W/kBT

= e−ζ/kBT (20)

Here, P is the probability to observe a value of work that falls below ∆F−ζ, where ζ
is an arbitrary positive value with units of energy. Eq. 20 tells us that the left tail of
the distribution ρ(W ) becomes exponentially suppressed in the thermodynamically
forbidden region W < ∆F , a bit like the evanescent piece of a quantum-mechanical
wave function in a classically forbidden region. Thus we have no hope to observe a
value of work that falls much more than a few kBT below ∆F . This is gratifyingly
consistent with everyday experience, which teaches us not only that the second law
is satisfied on average, in the sense of Eq. 19, but that it is never violated on a
macroscopic scale.

For sufficiently slow variation of the work parameter, the central limit theorem
suggests that ρ(W ) is approximately Gaussian. In this case Eq. 15 implies [6]

∆F = 〈W 〉 − σ2
W

2kBT
(21)

where σ2
W is the variance of the work distribution. This is the result that one expects

from linear response theory. [73, 74, 75, 76]
Because Eq 15 unequivocally implies that 〈W 〉 ≥ ∆F , it might at first glance

appear that this represents a microscopic, first-principles derivation of the second
law, and thus clarifies the microscopic origins of irreversibility. This is not the case,
however. In all derivations of Eq. 15 and related work relations (e.g. Eqs. 25, 30,
31), the arrow of time is effectively inserted by hand. Specifically, a quite special
statistical state (the Boltzmann-Gibbs distribution, peq) is assumed to describe the
system at a particular instant in time (t = 0), and attention is then focused on
the system’s evolution at later times only (t > 0). If instead the evolution of the
system leading up to the equilibrium state at t = 0 had been considered, then all the
inequalities associated with the second law would have been obtained, but with their
signs reversed. This emphasizes the importance of boundary conditions (in time),
and touches on the deep connection between irreversibility and causality [77, 78, 79].

Gibbs already recognized that if one accepts an initial equilibrium state given
by peq ∝ e−H/kBT , then various statements of the second law follow from properties
of Hamiltonian dynamics (see Chapter XIII of Ref. [80]). Similar results can be
obtained if the initial equilibrium state is represented by any distribution that is
a decreasing function of energy [81]. Interestingly, however, for a microcanonical
initial distribution, inequalities related to the second law of thermodynamics can be
violated, at least for systems with one degree of freedom [82, 83].

Let us now return to the picture of our ensemble as a swarm of trajectories,
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x1(t), x2(t), · · · described by the time-dependent phase space density,

f(x, t) ≡
〈
δ
[
x− xk(t)

]〉
, (22)

and let us define a weighted density

g(x, t) ≡
〈
δ
[
x− xk(t)

]
e−wk(t)/kBT

〉
(23)

where wk(t) is the work performed up to time t during the k’th realization. If we
visualize each trajectory xk(t) as a particle moving through phase space, and µk(t) =
exp[−wk(t)/kBT ] as a time-dependent “mass” that the particle carries on its journey,
then f(x, t) and g(x, t) can be interpreted as a normalized particle density and
mass density, respectively. Both are initially described by the canonical distribution,
f = g = peq

A,T , but for t > 0 the system is no longer in equilibrium :

ft ≡
〈
δ
[
x− xk(t)

]〉
6= peq

λ(t),T (x, t) , t > 0. (24)

By the simple trick of reweighting each trajectory by µk(t), this inequality is trans-
formed into an equality, namely [9]

gt ≡
〈
δ
[
x− xk(t)

]
e−wk(t)/kBT

〉
=

1

ZA,T
e−H(x;λ(t))/kBT . (25)

Note that the right side is proportional to peq
λ(t),T , and that we recover Eq. 15 by

setting t = τ and integrating over phase space.
To sketch a derivation of Eq. 25 for our toy model (Fig. 1), note that the ordinary

density f(x, t) satisfies the Liouville equation, ∂f/∂t + {f,H} = 0, using Poisson
bracket notation [68] and assuming that the system is isolated from the reservoir for
0 < t < τ . The left side of the Liouville equation is just the total time derivative
of f(x(t), t) along a Hamiltonian trajectory. For the weighted density g(x, t), an
additional term accounts for the time-dependent weight : [7, 9]

∂g

∂t
+ {g,H} = − ẇ

kBT
g, (26)

where ẇ = λ̇ ∂H/∂λ. It is now a matter of substitution to show that for the initial
conditions g0 = peq

A,T , the right side of Eq. 25 solves Eq. 26. For derivations of Eq. 25
(or equivalent results) in which the reservoir is modeled using stochastic and other
non-Hamiltonian dynamics, see Refs. [7, 18, 9, 26, 60, 32].

Eq. 25 reveals the following : even as it is driven away from equilibrium, the
swarm of trajectories retains information about the equilibrium state peq

λ(t),T , and

the key to unlocking this information is to attach a statistical, time-dependent
weight exp[−wk(t)/kBT ] to each realization. This reweighting procedure was des-
cribed and illustrated by Jarzynski [7, 84], and obtained in terms of path averages
by Crooks [18], but the elegant formulation given by Eq. 25 is due to Hummer and
Szabo [9, 26], who recognized it as a consequence of the Feynman-Kac theorem
of stochastic processes. This naturally brings to mind an analogy with the path-
integral formulation of quantum mechanics, in which a wave function is constructed
as a sum over paths, each contributing a phase exp(iS/~). The reweighting proce-
dure outlined above has a similar flavor to it, but with real weights exp[−wk(t)/kBT ]
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rather than complex phases. In the quantum-mechanical case, the sum over paths
produces a solution to the Schrödinger equation, while here we get the construc-
tion of an equilibrium distribution from nonequilibrium trajectories. Hummer and
Szabo [9] have used Eq. 25 to derive a method of constructing an equilibrium poten-
tial of mean force (a free energy profile along a reaction coordinate that differs from
the work parameter λ) from nonequilibrium data. This method has been confirmed
experimentally by Berkovich et al. [85]

4 Macroscopic hysteresis and microscopic symmetry

The second law of thermodynamics is manifested not only by inequalities such
as W ≥ ∆F , but also by the time-asymmetry inherent to irreversible processes.
Hysteresis loops neatly depict this asymmetry. As an example, imagine that we ra-
pidly stretch an ordinary rubber band, then after a sufficient pause we contract it,
returning to the initial state. For this process we get a classic hysteresis loop by
plotting the tension T versus the length L of the rubber band (Fig. 2). Hysteresis
conveys the idea that the state of the rubber band follows one path during the stret-
ching stage, but returns along a different path during contraction. Quantitatively,
the second law implies that the enclosed area is non-negative,

∮
T dL ≥ 0.

Similar considerations apply to the analogous stretching and contraction of
single molecules [86], only now statistical fluctuations become important : the ran-
dom jigglings of the molecule differ from one repetition of the process to the next. In
the previous section we saw that when fluctuations are taken into account, the rela-
tionship between work and free energy can be expressed as an equality rather than
the usual inequality. The central message of the present section has a similar ring :
with an appropriate accounting of fluctuations, the two branches of an irreversible
thermodynamic cycle (e.g. the stretching and contraction of the single molecule) are
described by unexpected symmetry relations (Eqs. 30, 31) rather than exclusively
by inherent asymmetry (Eqs. 28, 35).

To develop these results, it is useful to imagine two distinct processes, designated
the forward and the reverse process. [8] The forward process is the one defined in
Sec. 2, in which the work parameter is varied from A to B using a protocol λF (t)
(the subscript F has been attached as a label). During the reverse process, λ is
varied from B to A using the time-reversed protocol,

λR(t) = λF (τ − t). (27)

At the start of each process, the system is prepared in the appropriate equilibrium
state, corresponding to λ = A or B, at temperature T . If we perform the two
processes in sequence, the forward followed by the reverse, allowing the system to
equilibrate with the reservoir at the end of each process, then we have a thermody-
namic cycle that exhibits hysteresis. The Clausius inequality applies separately to
each stage :

−〈W 〉R ≤ ∆F ≤ 〈W 〉F (28)

where ∆F is defined as before (Eq. 5) and the notation now specifies separate
averages over the two processes. Of course, Eq. 28 implies that the average work
over the entire cycle is non-negative,

〈W 〉F + 〈W 〉R ≥ 0. (29)
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Figure 2 – Hysteresis loop for the irreversible stretching and contraction of rubber band. During
the stretching stage, the temperature and tension of the rubber band are higher than would have
been the case if the process were performed reversibly, while during the contraction stage they are
lower. As a result, W > 0 over the entire cycle. The hysteresis loop illustrates the idea that the
system evolves through one sequence of states during the forward process, but follows a different
path back during the reverse process. The statistical expression of this statement is given by Eq. 35.

This illustrates the Kelvin-Planck statement of the second law : no process is possible
whose sole result is the absorption of heat from a reservoir and the conversion of all
of this heat into work. [87]

Statistically, the forward and reverse processes are described by work distribu-
tions ρF (W ) and ρR(W ). While Eq. 28 applies to the means of these distributions,
Crooks [17] has shown that their fluctuations satisfy

ρF (+W )

ρR(−W )
= e(W−∆F )/kBT (30)

As with Eq. 15 (which is an immediate consequence of Eq. 30), this result remains
valid even when the system is driven far from equilibrium, and has been verified in
a number of experiments. [86, 65, 88, 66, 67]

While Crooks’s fluctuation theorem, Eq. 30, is a statement about distributions
of work values, at its heart is a stronger result about distributions of trajectories : [8]

PF [γF ]

PR[γR]
= e(WF−∆F )/kBT (31)

Here, the notation γF ≡ {xF (t) ; 0 ≤ t ≤ τ} denotes a trajectory that might be
observed during a realization of the forward process, and γR is its conjugate twin,

xR(t) = x∗F (τ − t) (32)

where x∗ is the microscopic state obtained by reversing all the momenta of x, as
illustrated schematically in Fig. 3. Simply put, the trajectory γR represents what we



Vol. XV Le Temps, 2010 Irreversibility and the Second Law of Thermodynamics at the Nanoscale 89

p

q

x (0)F

γF

γR

x ( )τ
F

x (0)R
*x ( )τ

R
*

Figure 3 – A conjugate pair of trajectories, γF and γR.

would see if we were to film the trajectory γF , and then run the movie backward.
Eq. 31 then states that the probability of observing a particular trajectory when
performing the forward process, PF [γF ], relative to that of observing its conjugate
twin during the reverse process, PR[γR], is given by the expression on the right side
of the equation, where WF ≡ W [γF ] is the work performed in the forward case.

To derive Eq. 31 for our toy model, assuming as before that the reservoir is
removed for 0 < t < τ , note that the ratio of probabilities to observe the Hamiltonian
trajectories γF and γR is simply the ratio of probabilities to sample their respective
initial conditions from equilibrium. [79] Thus

PF [γF ]

PR[γR]
=
ZB,T
ZA,T

e[H(xR(0);B)−H(xF (0);A)]/kBT

=
ZB,T
ZA,T

e[H(xF (τ);B)−H(xF (0);A)]/kBT = e(WF−∆F )/kBT , (33)

using Eqs. 32 and 7 to replace H(xR(0);B) by H(xF (τ);B). We get to the final
result by observing that the quantity inside square brackets on the second line is the
net change in H during the forward process, which (for a thermally isolated system,
see Section 3) is the work performed on the system. As with the results of Section 3,
numerous derivations of Eqs. 30 and 31 exist in the literature, corresponding to
various models of the system and reservoir. [8, 17, 18, 52, 54, 89, 58, 59, 61, 62, 63, 32].

To gain some appreciation for this result, recall that a system in equilibrium
satisfies microscopic reversibility [90] (closely related to detailed balance [17]) : any
sequence of events is as likely to occur as the time-reversed sequence. Using notation
similar to Eq. 31 this condition can be written,

Peq[γ] = Peq[γ∗], (34)
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where γ and γ∗ are a conjugate pair of trajectories (of some finite duration) for a
system in equilibrium. By contrast, as depicted by the two branches of a hysteresis
loop, an essential feature of thermodynamic irreversibility is that the system does
not simply retrace its steps when forced to return to its initial state. This idea is
expressed statistically by the inequality

PF [γF ] 6= PR[γR], (35)

that is the trajectories we are likely to observe during one process are not the
conjugate twins of those we are likely to observe during the other process. Eq. 31,
which replaces this inequality with a stronger equality, can be viewed as an extension
of the principle of microscopic reversibility, to systems that are driven away from
equilibrium by the variation of external parameters.

5 Relative entropy and dissipated work

Information theory and thermodynamics enjoy a special relationship, evidenced
most conspicuously by the formula,

I[peq] = S/kB, (36)

where I[p] ≡ −
∫
p ln p is the information entropy associated with a statistical dis-

tribution p. When p describes thermal equilibrium (Eq. 10), its information entropy
I coincides with the thermodynamic entropy, S/kB (Eq. 36). This familiar but re-
markable result relates a measure of our ignorance about a system’s microstate (I),
to a physical quantity defined via calorimetry (S).

In recent years, another set of results have emerged that, similarly, draw a
connection between information theory and thermodynamics, but these results apply
to irreversible processes rather than equilibrium states. Here the relevant
information-theoretic measure is the relative entropy [91, 92] between two distribu-
tions (Eq. 37), and the physical quantity is dissipated work, W −∆F . This section
describes these results in some detail, but the central idea can be stated succinctly
as follows. The irreversibility of a process can be expressed as an inequality bet-
ween a pair of probability distributions, either in trajectory space or in phase space
(Eqs. 35, 40, 24). Using the relative entropy to quantify the difference between the
two distributions, we find in each case that this measure relates directly to dissipated
work (Eqs. 38, 41, 43).

For two normalized probability distributions p and q on the same space of
variables, the relative entropy, or Kullback-Leibler divergence, [91]

D[p|q] ≡
∫
p ln

(
p

q

)
≥ 0 (37)

quantifies the extent to which one distribution differs from the other. D = 0 if and
only if the distributions are identical, and D � 1 if there is little overlap between
the two distributions. Note that in general D[p|q] 6= D[q|p].

Because relative entropy provides a measure of distinguishability, it is a handy
tool for quantifying irreversibility. Recall that hysteresis can be expressed statisti-
cally by the inequality PF [γF ] 6= PR[γR] (Eq. 35), where the trajectory-space distri-
butions PF and PR represent the system’s response during the forward and reverse
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processes. We can then use the relative entropy D[PF |PR] to assign a value to the
extent to which the system’s evolution during one process differs from that during
the other. From Eq. 31 it follows that [79]

D[PF |PR] =
W diss
F

kBT
(38)

where
W diss
F ≡ 〈W 〉F −∆F (39)

is the average amount of work that is dissipated during the forward process. (Simi-
larly, D[PR|PF ] = W diss

R /kBT .)
While distributions in trajectory space are abstract and difficult to visualize, a

result similar to Eq. 38 can be placed within the more familiar setting of phase space.
Let fF (x, t) denote the time-dependent phase space density describing the evolution
of the system during the forward process (Eq. 22), and define fR(x, t) analogously
for the reverse process. Then the densities fF (x, t1) and fR(x, τ − t1) are snapshots
of the statistical state of the system during the two processes, both taken at the
moment the work parameter achieves the value λ1 ≡ λF (t1) = λR(τ − t1). The
inequality

fF (x, t1) 6= fR(x∗, τ − t1) (40)

then expresses the idea that the statistical state of the system is different when
the work parameter passes through the value λ1 during the forward process, than
when it returns through the same value during the reverse process. (The reversal of
momenta in x∗ is related to the conjugate pairing of trajectories, Eq. 32.) Evaluating
the relative entropy between these distributions, Kawai, Parrondo and Van den
Broeck [93] found that

D[fF |f ∗R] ≤ W diss
F

kBT
, (41)

where the arguments of D are the distributions appearing in Eq. 40, for any choice of
λ1. This becomes an equality if the system is isolated from the thermal environment
as the work parameter is varied during each process. As with Eq. 38, we see that an
information-theoretic measure of the difference between two distributions, fF and
f ∗R, is related to a physical measure of dissipation, W diss

F /kBT .
Eqs. 38 and 41 are closely related. The phase-space distribution fF = fF (x, t1) is

the projection of the trajectory-space distribution PF [γF ] onto a single “time slice”,
t = t1, and similarly for f ∗R. Since the relative entropy between two distributions
decreases when they are projected onto a smaller set of variables [91, 93] – in this
case, from trajectory space to phase space – we have

D[fF |f ∗R] ≤ D[PF |PR] =
W diss
F

kBT
. (42)

In the above discussion, relative entropy has been used to quantify the difference
between the forward and reverse processes (hysteresis). It can equally well be used
to measure how far a system is removed from equilibrium at a given instant in time,
leading again to a link between relative entropy and dissipated work (Eq. 43 below).

For the process introduced in Sec. 2, let ft ≡ f(x, t) denote the statistical state of
the system at time t, and let peq

t ≡ peq
λ(t),T (x) be the equilibrium state corresponding
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to the current value of the work parameter. It is useful to imagine that ft continually
“chases” peq

t : as the work parameter is varied with time, the state of the system (ft)
tries to keep pace with the changing equilibrium distribution (peq

t ), but is unable to
do so (except in the reversible, isothermal limit). Vaikuntanathan and Jarzynski [94]
have shown that

D[ft|peq
t ] ≤ 〈w(t)〉 −∆F (t)

kBT
(43)

where ∆F (t) ≡ Fλ(t),T − FA,T . In other words, the average work dissipated up to
time t, in units of kBT , provides an upper bound on the degree to which the system
lags behind equilibrium at that instant. This result can be obtained from either
Eq. 25 or Eq. 41. [94] If we take t = τ ∗, allowing the system to relax to a final state
of equilibrium (see Sec. 2.1), then the left side of Eq. 43 vanishes and once again we
recover the Clausius inequality.

As mentioned, relative entropy is an asymmetric measure : in general D[p|q] 6=
D[q|p]. Feng and Crooks [95] have discussed the use of two symmetric measures of
distinguishability to quantify thermodynamic irreversibility. The first is the Jeffreys
divergence, D[p|q] + D[q|p]. When applied to forward and reverse distributions in
trajectory space, this gives the average work over the entire cycle (see Eq. 38) :

Jeffreys(PF ;PR) =
W diss
F +W diss

R

kBT
=
〈W 〉F + 〈W 〉R

kBT
. (44)

The second measure is the Jensen-Shannon divergence,

JS(p; q) =
1

2
(D[p|m] +D[q|m]) , (45)

where m = (p + q)/2 is the mean of the two distributions. When evaluated with
p = PF and q = PR, this leads to a more complicated, nonlinear average of W diss

F

and W diss
R (see Eq. 7 of Ref. [95]). Feng and Crooks nevertheless argue that the

Jensen-Shannon divergence is the preferred measure of time-asymmetry, as it has a
particularly nice information-theoretic interpretation. I will return to this point at
the end of the following section.

6 Guessing the direction of time’s arrow

Sir Arthur Eddington introduced the term “arrow of time” to describe the
evident directionality associated with the flow of events. [96] While time’s arrow
is familiar from daily experience – everyone recognizes that a movie run backward
looks peculiar ! – Eddington (among others) argued that it is rooted in the second
law of thermodynamics. For a macroscopic system undergoing an irreversible process
of the sort described in Sec. 2.1, the relationship between the second law and the
arrow of time is almost tautological : W > ∆F when events proceed in the correct
order, and W < ∆F when the movie is run backward, so to speak. For a microscopic
system, fluctuations blur this picture, since we can occasionally observe violations
of the Clausius inequality (Eq. 5). Thus the sign of W −∆F , while correlated with
the direction of time’s arrow, does not fully determine it. These general observations
can be made precise, that is the ability to determine the direction of time’s arrow
can be quantified.
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To discuss this point, it is convenient to consider a hypothetical guessing game
[79]. Imagine that I show you a movie in which you observe a system undergoing
a thermodynamic process as λ is varied from A to B. Your task is to guess whe-
ther this movie depicts the events in the order in which they actually occurred, or
whether I have filmed the reverse process (varying λ from B to A) and am now
(deviously) showing you the movie of that process, run backward. In the spirit of a
Gedankenexperiment, assume that the movie gives you full microscopic information
about the system – you can track the motion of every atom – and that you know the
Hamiltonian function H(x;λ) and the value ∆F = FB,T − FA,T . Assume moreover
that in choosing which process to perform, I flipped a fair coin : heads = F , tails
= R.

We can formalize this task as an exercise in statistical inference. [95] Let L(F |γ)
denote the likelihood that the movie is being shown in the correct direction (i.e. the
coin landed on heads and the forward process was performed), given the microscopic
trajectory γ that you observe in the movie. Similarly, let L(R|γ) denote the likelihood
that the reverse process was in fact performed and the movie is now being run
backward. Since these are the only possibilities, the likelihoods associated with the
two hypotheses (F , R) sum to unity :

L(F |γ) + L(R|γ) = 1 (46)

Now let W denote the work performed on the system, for the trajectory depicted
in the movie. If W > ∆F , then the first hypothesis (F ) is in agreement with the
Clausius inequality, while the second hypothesis (R) is not ; if W < ∆F , it is the
other way around. Therefore for a macroscopic system the task is easy, as the sign
of W −∆F determines the direction of time’s arrow. Formally,

L(F |γ) = θ(W −∆F ) (47)

where θ(·) is the unit step function.
For a microscopic system we must allow for the possibility that Eq. 5 might be

violated now and again. Bayes’ Theorem then provides the right tool for analyzing
the likelihood :

L(F |γ) =
P (γ|F )P (F )

P (γ)
. (48)

Here P (F ) is the prior probability that I carried out the forward process, which
is simply 1/2 since I flipped a fair coin to make my choice, and P (γ|F ) is the
probability to generate the trajectory γ when performing the forward process ; in
the notation of Sec. 4, this is PF [γ]. Finally, P (γ) is (effectively) a normalization
constant. Writing the analogous formula for L(R|γ), then combining these with the
normalization condition Eq. 46 and invoking Eq. 31, we get [97, 98, 31]

L(F |γ) =
1

1 + e−(W−∆F )/kBT
. (49)

This result quantifies your ability to determine the arrow of time from the trajectory
depicted in the movie. The expression on the right is a smoothed step function. If
the W surpasses ∆F by many units of kBT , then L(F |γ) ≈ 1 and you can say with
high confidence that the movie is being shown in the correct direction, while in the
opposite case you can be equally confident that the movie is being run backward.
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The transition from one regime to the other – where time’s arrow gets blurred, in
essence – occurs over an interval of work values whose width is a few kBT . (Indeed,
when viewed from a distance – that is, when plotted as a function of W on an axis
with macroscopic units of energy – Eq. 49 is indistinguishable from Eq. 47.) What is
remarkable is that this transition does not depend on the details of either the system
or the protocol λ(t). Eq. 49 was derived by Shirts et al [97] and later by Maragakis et
al [98] in the context of free energy estimation, where the interpretation is somewhat
different from the one I have discussed here.

Finally, returning to the point mentioned at the end of the previous section,
the Jensen-Shannon divergence has the following interpretation in the context of
our hypothetical guessing game : JS(PF ;PR) is the average gain in information
(regarding which process was performed) obtained from observing the movie [95].
When the processes are highly irreversible, this approaches its maximum value,
JS ≈ ln 2, corresponding to one bit of information. This makes sense : by watching
the movie you are able to infer with confidence whether the coin I flipped turned up
heads (F ) or tails (R). Feng and Crooks [95] have argued that this interpretation has
surprisingly universal implications for biomolecular and other nanoscale machines.
Namely, about 4 − 8 kBT of free energy must be dissipated per operating cycle to
guarantee that the machine runs reliably in a designated direction (as opposed to
taking backward and forward steps with equal probability, as would necessarily occur
under equilibrium conditions).

Finally, time’s arrow has unexpected relevance for the convergence of the expo-
nential average in Eq. 15. Namely, the realizations that dominate that average are
precisely those “during which the system appears as though it is evolving backward
in time”. [79] A detailed analysis of this assertion involves both hysteresis and re-
lative entropy, thus nicely tying together the four strands of discussion represented
by Sections 3 – 6. [79]

7 Entropy production and related quantities

This review has focused on far-from-equilibrium predictions for work and free
energy (Eqs. 15, 25, 30, 31) and how these inform our understanding of irreversibi-
lity and the second law of thermodynamics. Because the second law is often taken
to be synonymous with the increase of entropy, we might well wonder how these
predictions relate to statements about entropy.

As a point of departure, for macroscopic systems we can use the first law (∆U =
W +Q) and the definition of free energy (F = U − ST ) to write,

W −∆F

T
= ∆S − Q

T
= ∆Stot, (50)

where ∆Stot is the combined entropy change of the system and reservoir. If we extend
this to microscopic systems, accepting it as the definition of ∆Stot for a single reali-
zation of a thermodynamic process, then the results discussed in Sections 3 - 6 can
formally be rewritten as statements about the fluctuations of entropy production.

When multiple thermal reservoirs are involved, one can generalize Eq. 6 in an
obvious way by including terms for all the reservoirs, e.g. H = H+

∑
k(H

k
env +Hk

int).
Working entirely within a Hamiltonian framework, the results of Sec. 3, notably
Eqs. 15, 19 and 20, can then be written in terms of entropy production, and ge-
neralized further by dropping the assumption that the system of interest begins in
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equilibrium. [99] Esposito, Lindenberg and Van den Broeck have recently shown
that in this situation the value of ∆Stot is equal to the statistical correlation that
develops between the system and the reservoirs, as measured in terms of relative
entropy. [100]

The Hamiltonian framework is often inconvenient for studying nonequilibrium
steady states. Among the many tools that have been introduced for the theoretical
analysis and numerical simulation of such states, Gaussian thermostats – the term
refers to a method of modeling nonequilibrium systems based on Gauss’s principle
of least constraint [101] – have played a prominent role in recent developments
in nonequilibrium thermodynamics. The term fluctuation theorem was originally
applied to a property of entropy production, observed in numerical investigations
of a sheared fluid simulated using a Gaussian thermostat [10, 11, 12, 13]. Since
fluctuation theorems for entropy production have been reviewed elsewhere [21, 22,
24, 29, 30, 32, 33, 35, 36], I will limit myself to a brief summary of how these results
connect to those of Sections 3 - 6.

The transient fluctuation theorem of Evans and Searles [11] applies to a system
that evolves from an initial state of equilibrium to a nonequilibrium steady state.
Letting pτ (∆s) denote the probability distribution of the entropy produced up to a
time τ > 0, it states that

pτ (+∆s)

pτ (−∆s)
= e∆s/kB . (51)

This is clearly similar to Eq. 30, except that it pertains to a single thermodynamic
process, rather than a pair of processes (F and R). Eq. 51 implies an integrated
fluctuation theorem,

〈e−∆s/kB〉 = 1, (52)

that is entirely analogous to Eq. 15, and from this we in turn get analogues of Eqs. 19
and 20 :

〈∆s〉 ≥ 0 , P [∆s < −ξ] ≤ e−ξ/kB (53)

Now consider a system that is in a nonequilibrium steady state from the distant
past to the distant future, such as a fluid under constant shear [10], and let σ ≡
∆s/τ denote the entropy production rate, time-averaged over a single, randomly
sampled interval of duration τ . The steady-state fluctuation theorem of Gallavotti
and Cohen [12, 13] asserts that the probability distribution pτ (σ) satisfies

lim
τ→∞

1

τ
ln
pτ (+σ)

pτ (−σ)
=

σ

kB
. (54)

The integrated form of this result is [21]

lim
τ→∞

1

τ
ln
〈
e−τσ/kB

〉
τ

= 0, (55)

where the brackets denote an average over intervals of duration τ , in the steady
state. Formal manipulations then give us

〈σ〉τ ≥ 0 , lim
τ→∞

1

τ
lnPτ [σ < −ε] ≤ −ε, (56)

where Pτ [σ < −ε] is the probability to observe a time-averaged entropy production
rate less than −ε, during an interval of duration τ . The resemblance between Eqs. 54
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- 56, and Eqs. 30, 15, 19, 20, respectively, should be obvious, although viewed as
mathematical statements they are different.

The microscopic definition of entropy production in Eqs. 51 - 56 depends on the
equations of motion used to model the evolution of the system. In the early papers on
fluctuation theorems, entropy production was identified with phase space contraction
along a deterministic but non-Hamiltonian trajectory [10, 11, 12, 13]. These results
were then extended to encompass stochastic dynamics, first by Kurchan [14] for
diffusion, and then by Lebowitz and Spohn [15] for Markov processes in general.
Maes subsequently developed a unified framework based on probability distributions
of “space-time histories” [16], that is trajectories. In all these cases, the validity of
the fluctuation theorem ultimately traces back to the idea that trajectories come
in pairs related by time-reversal, and that the production of entropy is intimately
linked with the probability of observing one trajectory relative to the other, in a
manner analogous with Eq. 31.

As an aside, it is intriguing to note that multiple fluctuation theorems can be
valid simultaneously, in a given physical context. This idea was mentioned in passing
by Hatano and Sasa [19] in the context of transitions between nonequilibrium states,
and has been explored in greater detail by a number of authors since then [54, 103,
32, 104].

Finally, for nonequilibrium steady states there exist connections between rela-
tive entropy and entropy production, analogous to those discussed in Sec. 5. If rela-
tive entropy is used to quantify the difference between distributions of steady-state
trajectories and their time-reversed counterparts, then the value of this difference
can be equated with the thermodynamic production of entropy. This issue has been
explored by Maes [16], Maes and Netočný [105], and Gaspard [106].

8 Conclusions and Outlook

The central message of this review is that far-from-equilibrium fluctuations are
more interesting than one might have guessed : they tell us something new about
how the second law of thermodynamics operates at the nanoscale. In particular,
they allow us to rewrite thermodynamic inequalities as equalities, and they reveal
that nonequilibrium fluctuations encode equilibrium information.

The last observation has led to practical applications in two broad settings.
The first is the development of numerical methods for estimating free energy dif-
ferences, an active enterprise in computational chemistry and physics. [23] While
traditional strategies involve equilibrium sampling, Eqs. 15, 25 and 30 suggest the
use of nonequilibrium simulations to construct estimates of ∆F . This is an ongoing
area of research [107, 108], but nonequilibrium methods have gradually gained ac-
ceptance into the free energy estimation toolkit, and are being applied to a variety
of molecular systems ; see Ref. [109] for a recent example.

Nonequilibrium work relations have also been applied to the analysis of single-
molecule experiments, as originally proposed by Hummer and Szabo [9] and pionee-
red in the laboratory by Liphardt et al. [64] Individual molecules are driven away
from equilibrium using (for instance) optical tweezers or atomic-force microscopy,
and from measurements of the work performed on these molecules, one can recons-
truct equilibrium free energies of interest. [27, 110] For recent applications of this
approach, see Refs. [111, 112, 113, 114].
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It remains to be seen whether the understanding of far-from-equilibrium fluc-
tuations that has been gained in recent years will lead to the formulation of a unified
“thermodynamics of small systems”, that is, a theoretical framework based on a few
propositions, comparable to classical thermodynamics. Some progress, however, has
been made in this direction.

For stochastic dynamics, Seifert and colleagues [54, 115, 116, 117, 32] – building
on earlier work by Sekimoto [118, 37] – have developed a formalism in which micro-
scopic analogues of all relevant macroscopic quantities are precisely defined. Many of
the results discussed in this review follow naturally within this framework, and this
has helped to clarify the relations among these results. [32] Evans and Searles [22]
have championed the view that fluctuation theorems are most naturally understood
in terms of a dissipation function, Ω, whose properties are (by construction) inde-
pendent of the dynamics used to model the system of interest. More recently, Ge and
Qian [119] have proposed a unifying framework for stochastic processes, in which
both the information entropy −

∫
p ln p and the relative entropy

∫
p ln(p/q) play key

roles.
References [32] and [119] make a connection to earlier efforts by Oono and

Paniconi [120] to develop a “steady-state thermodynamics” organized around none-
quilibrium steady states. While the original goal was a phenomenological theory, the
derivation by Hatano and Sasa of fluctuation theorems for transitions between steady
states [19, 121] has encouraged a microscopic approach to this problem. [122, 123]
In the absence of a universal statistical description of steady states analogous to the
Boltzmann-Gibbs formula (Eq. 10) this has proven to be highly challenging.

This review has focused exclusively on classical fluctuation theorems and work
relations, but the quantum case is also of considerable interest. While quantum
versions of these results have been studied for some time [124, 125, 126, 127], the
past two to three years have seen a surge of interest in this topic [128, 129, 130,
131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142]. Quantum mechanics
of course involves profound issues of interpretation. It can be hoped that in the
process of trying to specify the quantum-mechanical definition of work [132], or
dealing with open quantum systems [131, 137, 138, 139, 140, 141, 142], or analyzing
exactly solvable models [130, 133, 135, 136], or proposing and ultimately performing
experiments to test far-from-equilibrium predictions [134], important insights will be
gained. Applications of nonequilibrium work relations to the detection of quantum
entanglement [143] and to combinatorial optimization using quantum annealing [144]
have very recently been proposed.

Finally, there has been a rekindled interest in recent years in the thermodyna-
mics of information-processing systems and closely related topics such as the appa-
rent paradox of Maxwell’s demon [145]. Making use of the relations described in this
review, a number of authors have investigated how nonequilibrium fluctuations and
the second law are affected in situations involving information processing, such as
occur in the context of memory erasure and feedback control. [146, 147, 148, 149, 150]
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[122] Komatsu TS., Nakagawa N., Sasa S-I., Tasaki H.: Phys. Rev. Lett. 100,
230602/1–4 (2008).

[123] Komatsu TS., Nakagawa N., Sasa S-I., Tasaki H.: J. Stat. Phys. 134, 401–23
(2009).

[124] Yukawa S.: J. Phys. Soc. Japan 69, 2367–70 (2000).

[125] Kurchan J.: arXiv:cond-mat/0007360v2, (2000).

[126] Tasaki H.: arXiv:cond-mat/0009244v2, (2000).

[127] Mukamel S.: Phys. Rev. Lett. 90, 170604/1–4 (2003).

[128] Talkner P., Lutz E., Hänggi P.: Phys. Rev. E 75, 050102(R)/1–2 (2007).

[129] Talkner P., Hänggi P.: J. Phys. A: Math. Theor. 40, F569–71 (2007).

[130] Teifel J., Mahler G.: Phys. Rev. E 76, 051126/1–6 (2007).

[131] Quan HT., Yang S., Sun CP.: arXiv:0804.1312v1, (2008).

[132] Talkner P., Hänggi P., Morillo M.: Phys. Rev. E 77, 051131/1–6 (2008).

[133] Talkner P., Burada PS., Hänggi P.: Phys. Rev. E 78, 011115/1–11 (2008).

[134] Huber G., Schmidt-Kaler S., Deffner S., Lutz E.: Phys. Rev. Lett. 101,
070403/1–4 (2008).

[135] Van Zon R., Hernández de la Peña L., Peslherbe GH., Schofield J.: Phys. Rev.
E 78, 041103/1–11 (2008).

[136] Van Zon R., Hernández de la Peña L., Peslherbe GH., Schofield J.: Phys. Rev.
E 78, 041104/1–14 (2008).

[137] Crooks GE.: J. Stat. Mech.: Theor. Experiment P10023/1–9 (2008).

[138] Quan HT., Dong H.: arXiv:0812.4955v1, (2008).

[139] Talkner P., Campisi M., Hänggi P.: J. Stat. Mech.: Theor. Experiment
P02025/1–12 (2009).

[140] Deffner S., Lutz E.: arXiv:0902.1858v1, (2009).

[141] Andrieux D., Gaspard P., Monnai T., Tasaki S.: New J. Phys. 11, 043014/1–25
(2009).

[142] Campisi M., Talkner P., Hänggi P.: Phys. Rev. Lett. 102, 210401/1–4 (2009).

[143] Hide J., Vedral V.: 2010. Phys. Rev. A 81, 062303/1–5 (2010).

[144] Ohzeki M.: Phys. Rev. Lett., in press (2010).

[145] Maruyama K., Nori F., Vedral V.: Rev. Mod. Phys. 81, 1–23 (2009).

[146] Piechocinska B.: Phys. Rev. A 61, 062314/1–9 (2000).

[147] Sagawa T., Ueda M.: Phys. Rev. Lett. 100, 080403/1–4 (2008).

[148] Dillenschneider R., Lutz E.: Phys. Rev. Lett. 102, 210601/1–4 (2009).

[149] Sagawa T., Ueda M.: Phys. Rev. Lett. 102, 250602/1–4 (2009).

[150] Sagawa T., Ueda M.: Phys. Rev. Lett. 104, 090602/1–4 (2010).


