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1 Introduction

Until the seventies, it was believed that an erratic temporal behavior of some quan-
tity x(t) in a statistically stationary state had to result from the interaction of many
degrees of freedom. For instance, a qualitative description of the transition to tur-
bulence of fluid flows given by Landau & Lifshitz (1959) was ascribing the temporal
complexity to the arbitrary phases resulting from a large number of successive Hopf
bifurcations. Most quantitative models of systems with an erratic behavior were
based on the theory of stochastic processes, assuming more or less explicitly that
their randomness was resulting from a large number of uncontrolled parameters or
initial conditions. It was of course known since Poincaré that low dimensional Hamil-
tonian systems can display complicated (non periodic) solutions, iterations of simple
maps were used to generate random numbers, and erratic behaviors were observed
in simple electric devices, but the concept of low dimensional deterministic chaos
was far from being considered among physicists who were used to problems either
governed by linear equations, or obey extremum principles. Modeling an erratic tem-
poral behavior with a low dimensional dynamical system, i. e. a small number of
coupled nonlinear differential equations, have been made first in the sixties, one of
the most famous example being the Lorenz system (Lorenz 1963), which certainly
triggered a large part of the studies on temporal chaos that were performed in the
seventies and the eighties. Ruelle and Takens (1971) proposed a qualitative mecha-
nism to get a chaotic regime after a small number of bifurcations from a stationary
state, in contrast to Landau’s picture. A chaotic velocity field in a Couette-Taylor
flow, generated from a stationary state after a small number of transitions, was re-
ported by Swinney & Gollub (1975) and followed by a lot of similar observations
in other hydrodynamic systems, nonlinear electronic, acoustic or optical devices,
chemical reactions, etc. The observation of the period doubling transition scenario
to chaos in a flow driven by thermal convection by Maurer and Libchaber (1979)
opened the way to test quantitative predictions made using renormalisation group
techniques on the logistic map (Feigenbaum 1978, Tresser & Coullet 1978). The ob-
served quantitative agreement (Libchaber et al. 1982) clearly showed that the flow
of a viscous fluid can display a transition to an erratic temporal behavior that is
qualitatively and quantitatively described by a small number of interacting modes
or degrees of freedom. Other transition scenarios to chaos were predicted, such as
intermittency (Manneville & Pomeau 1979) or transitions from quasiperiodic states
that were also found in good quantitative agreement with experimental observations
in many different systems. The general picture that emerged from these experimen-
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tal and theoretical studies is that there exist universal scenarios of transition to
chaos. Similarly to phase transitions, there are quantitative characteristics of these
scenarios that do not depend on the particular system under consideration.

However, in contrast to what has been believed for a while by some people,
these achievements did not help to solve the problem of fluid turbulence. It has
been realized that one usually needs to quench a lot of degrees of freedom of a fluid
flow in order to observe chaotic regimes in agreement with the behaviors predicted
for low dimensional dynamical systems. For instance, the convection experiments
mentioned above were performed in containers of small aspect ratio, i. e. involving
a small number of convective rolls. In the case of large aspect ratio containers, no
simple scenario of transition to chaos was identified (Ahlers & Behringer 1978). A
more flexible way to control the number of degrees of freedom of a convective flow
has been used by applying an external horizontal magnetic field to an electrically
conducting fluid. This inhibits three-dimensional modes and makes the flow two-
dimensional without variation of the velocity along the magnetic field axis. It has
been shown that transitions to chaos in agreement with the behaviors predicted by
low dimensional dynamical systems were observed only for large enough values of
the applied magnetic field (Fauve et al. 1984). Thus, although dynamical system
theory provided new concepts in physics including the one of deterministic chaos,
and triggered a new way of approaching nonlinear phenomena, it has been so far
of little help to understand turbulent flows which involve the interaction of many
different scales. Kolmogorov type qualitative arguments or a stochastic description
are more efficient tools in these cases. This has given the impression that despite its
success, deterministic chaos is restricted to a class of rather academic flows in which
many degrees of freedom have been quenched.

On the other hand, it can be argued that the dynamics of some large scale
modes in a strongly turbulent flow could display low dimensional dynamics if they
are weakly coupled to the turbulent background. This is the case in many geophysical
and astrophysical flows where an oscillatory or a weakly chaotic behavior can occur
in flows at huge Reynolds numbers. Some climatic phenomena indeed display a
characteristic feature of low dimensional chaos: well defined patterns occur within a
random temporal behavior. Examples are atmospheric blockings that can affect the
climate on a time scale of several days (Ghil & Childress 1987) or El Nino events that
occur every few years (Vallis 1986). The qualitative features of these phenomena have
been often modeled using a few coupled variables such as mean temperature, wind
or current. This truncation is sometimes justified by scale separation (for instance,
the dynamics of the ocean is much slower than the one of the atmosphere), but it is
often arbitrary since many phenomena involves a continuum of scales without any
clear gap among them. Another example of nearly periodic behavior superimposed
on turbulence is provided by the solar cycle: it has been observed since several
centuries that well defined spatio-temporal patterns, dark spots on the solar surface
that appear at mid-latitudes and migrate toward the equator, involve a 22 year
period. It has been found later that these spots correspond to large values of the
magnetic field generated by turbulent convection in the sun through the dynamo
effect. The number of sun spots follows the cycle of the solar magnetic field that
reverses roughly every 11 years. The amplitude of this oscillation varies on much
longer time scales, and long periods with a very low solar activity (a small number
of sun spots) randomly occurred in the past. Several low dimensional models of
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the solar cycle, involving a few modes of the magnetic and velocity fields, have
been proposed (see section 5). It is very hard to justify this type of description;
the level of turbulence is so high that both the velocity and the magnetic fields
display a continuous range of scales and it looks rather arbitrary to write down a
few equations for a small number of modes and forget about the effect of all the
others.

It is known that the dynamics of a complex system is governed by a small num-
ber of relevant modes in the vicinity of bifurcations (see for instance, Arnold 1982).
The amplitude of the unstable modes varying on long time scales compared to the
stable ones, the later can be adiabatically eliminated, thus leading to a low dimen-
sional dynamical system. There exist various perturbation techniques that can be
used to perform this elimination and find the differential equations governing the
amplitudes of the unstable modes when the basic state of the system is stationary or
time periodic. However, almost nothing is known when an instability occurs from a
turbulent regime. It seems even difficult to give a proper definition of such a situation
in hydrodynamic turbulence. The dynamo effect, i.e the generation of a magnetic
field by the flow of an electrically conducting fluid, provides a very interesting sit-
uation in this respect. It is an instability process that can occur in a liquid metal
only when the kinetic Reynolds number of the flow is very large (see section 2). The
instability threshold can be easily defined. Although the experiments involve some
cost and technical difficulties, once the dynamo regime is reached, the dynamics of
the magnetic field can be easily measured. We will show here that even when the
magnetic field is generated by a strongly turbulent flow that involves fluctuations
as large as the mean flow, it displays low dimensional dynamics. Thus, fluid dy-
namos provide an example in which a few modes are governed by a low dimensional
dynamical system although they are coupled to a strongly turbulent background.

This paper is organized as follows: definitions and elementary facts about fluid
dynamos are shortly recalled in section 2. In section 3, the first experimental observa-
tions made in Karlsruhe and Riga are described. The results of the VKS experiment
are reported in section 4. Section 5 provides a short review of the phenomenon of
magnetic reversals and of various related models. A model for the dynamics of the
magnetic field observed in the VKS experiment is presented is section 6. It is il-
lustrated using direct numerical simulations in section 7. Finally, a minimal model
for field reversals is presented in section 8. Some other systems displaying a low
dimensional large scale dynamics on a turbulent background are mentioned in the
conclusion.

2 The dynamo effect

It is now believed that magnetic fields of planets and stars are generated by the
motion of electrically conducting fluids through the dynamo process. This has been
first proposed by Larmor (Larmor, 1919) for the magnetic field of the sun. Assuming
the existence of an initial perturbation of magnetic field, he observed that “internal
motion induces an electric field acting on the moving matter: and if any conducting
path around the solar axis happens to be open, an electric current will flow round
it, which may in turn increase the inducing magnetic field. In this way it is possible
for the internal cyclic motion to act after the manner of the cycle of a self-exciting
dynamo, and maintain a permanent magnetic field from insignificant beginnings,



56 S. Fauve Séminaire Poincaré

at the expense of some of the energy of the internal circulation” (for reviews of
the subject, see for instance Moffatt (1978), Zeldovich et al. (1983), Busse (1977),
Roberts (1994) Fauve & Pétrélis (2003).

Maxwell’s equations together with Ohm’s law give the governing equation of the
magnetic field, B(r, t). In the approximation of magnetohydrodynamics (MHD), it
takes the form

∂B

∂t
= ∇× (V ×B) +

1

µ0σ
∇2B, (1)

where µ0 is the magnetic permeability of vacuum and σ is the electrical conductivity.
The last term on the right hand side of (1) represents ohmic dissipation, and the
first one, electromagnetic induction due to the velocity field V(r, t). B = 0 is an
obvious solution of (1), and for V = 0, any perturbation of B(r, t) (respectively of
the current density j(r, t)) decays to zero due to ohmic diffusion. B = 0 can be an
unstable solution if the induction term compensates ohmic dissipation. The ratio
of these two terms defines the magnetic Reynolds number, Rm = µ0σV L, where
V is the typical velocity amplitude and L the typical length scale of the flow. If
V(r, t) has an appropriate geometry, perturbations of magnetic field grow when Rm

becomes larger than a critical value Rc
m (in the range 10 − 1000 for most studied

examples). Magnetic energy is generated from part of the mechanical work used to
drive the flow.

In order to describe the saturation of the magnetic field above the dynamo
threshold Rc

m, we need to take into account its back reaction on the velocity field.
V(r, t) is governed by the Navier-Stokes equation

∂V

∂t
+ (V · ∇)V = −∇

(
p

ρ
+

B2

2µ0ρ

)
+ ν∇2V +

1

µ0ρ
(B · ∇)B, (2)

that we have restricted to the case of an incompressible flow (∇ · V = 0). ν is
the kinematic viscosity and ρ is the fluid density. In the MHD approximation, the
Lorentz force, j × B, can be split into the two terms involving B in (2). If the
modification of the flow under the action of the growing magnetic field weakens
the dynamo capability of the flow, the dynamo bifurcation is supercritical, i.e., the
magnetic field grows continuously from zero when Rm is increased above Rc

m.
Thus, the minimum set of parameters involved in a fluid dynamo consists of the

size of the flow domain, L, the typical fluid velocity, V , the density, ρ, the kinematic
viscosity, ν, the magnetic permeability of vacuum, µ0, and the fluid electrical con-
ductivity, σ. For most astrophysical objects, the global rotation rate, Ω, also plays
an important role and the Coriolis force −2Ω×V should be taken into account when
the Navier-Stokes equation (2) is written in the rotating frame. Three independent
dimensionless parameters thus govern the problem. We can choose the magnetic
Reynolds number, Rm, the magnetic Prandtl number, Pm, and the Rossby number
Ro

Rm = µ0σV L, Pm = µ0σν, Ro =
V

LΩ
. (3)

Then, dimensional analysis implies that we have for the dynamo threshold

Rc
m = f(Pm, Ro), (4)
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and for the mean magnetic energy generated above the dynamo threshold

〈B2〉 = µ0ρV
2 g(Rm, Pm, Ro). (5)

f and g are arbitrary functions at this stage. Their dependence on Pm (or equiva-
lently on the kinetic Reynolds number, Re = V L/ν) and on Ro can be related to
the effect of flow characteristics (in particular turbulence) on the dynamo threshold
and saturation. In many realistic situations, more parameters should be taken into
account. For instance, f and g also depend on the choice of boundary conditions
(for instance their electrical conductivity or their magnetic permeability, etc).

For planets and stars as well as for all liquid metals in the laboratory, the
magnetic Prandtl number is very small, Pm < 10−5. Magnetic field self-generation
can be obtained only for large enough values of Rm for which Joule dissipation can
be overcome (for most known fluid dynamos, the dynamo threshold Rmc is roughly
in the range 10 − 1000). Therefore, the kinetic Reynolds number, Re = Rm/Pm, is
very large and the flow is strongly turbulent. This is of course the case of planets and
stars which involve huge values of Re but is also true for dynamo experiments with
liquid metals for which Re > 105. Direct numerical simulations are only possible
for values of Pm orders of magnitude larger that the realistic ones for the sun, the
Earth or laboratory experiments. First because it is not possible to handle a too
large difference between the time scale of diffusion of the magnetic field and the
one of momentum; second, a small Pm dynamo occurs for large Re and requires the
resolution of the small spatial scales generated by turbulence. Strongly developed
turbulence has also some cost for the experimentalists. Indeed, the power needed to
drive a turbulent flow scales like P ∝ ρL2V 3 and we have

Rm ∝ µ0σ

(
PL

ρ

)1/3

. (6)

This formula has simple consequences: first, taking liquid sodium (the liquid metal
with the highest electric conductivity), µ0σ ≈ 10 m−2s, ρ ≈ 103 kg m−3, and with a
typical length-scale L ≈ 1m, we get P ≈ R3

m; thus a mechanical power larger than
100 kW is needed to reach a dynamo threshold of the order of 50. Second, it appears
unlikely to ever operate experimental dynamos at Rm large compared with Rmc. In-
deed, it costs 8 times more power to reach 2Rmc than to reach the dynamo threshold.
In conclusion, most experimental dynamos should have the following characteristics:

• they bifurcate from a strongly turbulent flow regime,

• they operate in the vicinity of their bifurcation threshold.

Although the values of Rm and Pm that can be obtained in laboratory experi-
ments using liquid sodium are not too far from the ones of the Earth core, it would
be very difficult to perform experiments with large Rm at Ro significantly smaller
than unity whereas we have Ro ≈ 10−6 for the Earth core. The comparison is of
course also difficult in the case of the sun: although Ro is of order one for the so-
lar convection zone, Rm is more than six orders of magnitude larger than in any
laboratory experiment. As said above, the situation is worse when direct numerical
simulations are considered. We thus cannot claim that cosmic magnetic fields can
be reproduced at the laboratory scale except if we can show that the dynamics of
the magnetic field weakly depends on some dimensionless parameters.
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As already mentioned, laboratory dynamos operate in the vicinity of the insta-
bility threshold but at very high values of the Reynolds number. This give rise to a
very interesting example of instability that differs in many respects from usual hy-
drodynamical instabilities. The dynamo bifurcation occurs from a base state which
is fully turbulent. This may play a role on various aspects of the dynamo process
and it raises several questions.

• What is the effect of turbulent velocity fluctuations on the dynamo onset? Can
they change the nature of the bifurcation? Will they favor or inhibit dynamo
action? In other words, what is the behavior of f when Pm → 0? In the absence
of global rotation, Ro−1 = 0, is f constant with respect to Pm in this limit,
thus giving Rc

m = constant, or does the threshold continuously increases when
Pm → 0? (Fauve & Pétrélis, 2007).

• Above onset, at which amplitude does the magnetic field saturate? In the ab-
sence of global rotation and for small Pm, do we have 〈B2〉 ∝ µ0ρV

2g(Rm), i.e.,
〈B2〉 ∝ [ρ/(µ0σ

2L2)] g(Rm) close to threshold (Pétrélis & Fauve 2001)?

• Is there a parameter range for which we get energy equipartition, 〈B2〉/µ0 ∝
ρV 2? What is the behavior of the ohmic to viscous dissipation ratio? (Fauve &
Pétrélis 2007).

• What is the effect of global rotation on the dynamo threshold and saturation?

• What is the effect of turbulent fluctuations on the bifurcation? Is g(Rm) ∝
Rm − Rc

m as for a usual supercritical bifurcation close to threshold, or should
we expect a behaviour involving an anomalous exponent (Pétrélis et al. 2007)?

• What is the effect of turbulent fluctuations on the dynamics of the magnetic
field? What are the statistical properties of the fluctuations of the magnetic
field?

We will discuss this problem in connection with existing laboratory dynamo
experiments. The first ones, performed in Karlsruhe and Riga, have been designed
by taking into account the mean flow alone. Large scale turbulent fluctuations have
been inhibited as much as possible by a proper choice of boundary conditions. On
the contrary, the VKS experiment has been first motivated by the study of the
possible effects of turbulence on the dynamo instability.

3 The Karlsruhe and Riga experiments

The first homogeneous fluid dynamos have been operated in liquid sodium in Karl-
sruhe (Stieglitz and Müller, 2001) using a flow in an array of pipes set-up in order
to mimic a spatially periodic flow proposed by G. O. Roberts (1972), and in Riga
(Gailitis et al., 2001) using a Ponomarenko-type flow (Ponomarenko, 1973). We first
recall the flow geometries and briefly review the results obtained by both groups.

3.1 The Karlsruhe experiment

The experiment in Karlsruhe, Germany, was motivated by a kinematic dynamo
model developed by G.O. Roberts (Roberts, 1972) who showed that various peri-
odic flows can generate a magnetic field at large scale compared to the flow spatial
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Figure 1: Schematics for the experiments from Karlsruhe (a) and Riga (b) which show how helical
flow is forced by guiding the sodium through steel channels (from Stieglitz and Müller, 2001 and
Gailitis et al., 2001).

periodicity. One of the cellular flows he considered is a periodic array of vortices
with the same helicity. Flows with such topology drive an α-effect that can lead
to dynamo action. This mechanism is quite efficient at self-generation (in the sense
of generating a magnetic field at a low magnetic Reynolds number based on the
wavelength of the flow).

A dynamo based on this mechanism was constructed and run successfully in
Karlsruhe. A sketch of the experiment is shown in figure 1a. The flow is located in a
cylindrical vessel of width 1.85 m and height H = 0.7 m. It contains 52 elementary
cells placed on a square lattice. Each cell is made of two coaxial pipes: an helical
baffle drives the helical flow in the outer cylindrical shell whereas the flow in the
inner shell is axial. In two neighbouring cells, the velocities are opposite such that
the helicity has the same sign in all the cells. Although the volume is finite instead
of the infinite extension assumed by G. O. Roberts, the dynamo capability of the
flow is not strongly affected in the limit of scale separation, i.e., when the size L of
the full volume is large compared to the wavelength l of the flow (Busse et al., 1996).
In this limit, the relevant magnetic Reynolds number involves the geometrical mean
of the two scales as a length-scale, and the geometrical mean of axial and azimuthal
velocities as a velocity scale. However, it can be shown using simple arguments that
it is not efficient to increase too much the scale separation if one wants to minimise
the power needed to reach the dynamo threshold (Fauve and Pétrélis, 2003). The
flow is driven by three electromagnetic pumps and the axial and azimuthal velocities
are independently controlled. The liquid sodium temperature is maintained fixed by
three steam-evaporation heat exchangers. Measurements of the magnetic field were
made both locally with Hall-probes and globally using wire coils. Pressure drops in
the pipe and local velocity measurements were also performed.

When the flow rates are large enough, a magnetic field is generated by dynamo
action. The bifurcation is stationary and the magnetic field displays fluctuations
caused by the small scale turbulent velocity field (see figure 2) . This generation
comes at a cost in the power necessary to drive the flow and the pressure drop
increases.
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Due to the Earth’s magnetic field, the bifurcation is imperfect but both branches
of the bifurcation can be reached by applying an external magnetic field, as displayed
in figure 2. Among others, the experimentalists performed careful studies of the
dependence of the dynamo threshold on the axial and helical flow rates and on the
the electrical conductivity that can be varied by changing the temperature. They
also considered the effect of flow modulation on the dynamo threshold and studied
the amplitude and the geometry of the magnetic field in the supercritical regime.
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Figure 2: (Left) Time recording of one component of the magnetic field in the Karlsruhe experiment.
The amplitude of the magnetic field increases after each increasing step of the flow rate of liquid
sodium. Small fluctuations are visible once the magnetic field has saturated at a constant mean
value. (Right) The magnetic field amplitude increases above the critical flow rate. Another branch
of self-generation can be reached only by imposing an initial field. This other branch is disconnected
from the main branch. The imperfection of the bifurcation has been ascribed to the Earth’s field.
(Figures from Stieglitz and Müller, 2002).

3.2 The Riga experiment

The experiment carried out by Gailitis et al. (2001) has been motivated by one of
the simplest examples of a homogeneous dynamo found by Ponomarenko (1973).
A conducting cylinder of radius R, embedded in an infinite static medium of the
same conductivity with which it is in perfect electrical contact, is in solid body
rotation at angular velocity Ω, and in translation along its axis at speed V . In an
unbounded domain, this helical motion generates a travelling wave magnetic field.
This Hopf bifurcation occurs for a minimum critical magnetic Reynolds number
Rmc = µ0σR

√
(Rω)2 + V 2 = 17.7 for an optimum Rossby number Ro = V/(RΩ) =

1.3. We note that the maximum dynamo capability of the flow (Rmc minimum) is
obtained when the azimuthal and axial velocities are of the same order of magni-
tude (Ro ∼ 1). This trend is often observed with more complex flows for which
the maximum dynamo capability is obtained when the poloidal and toroidal flow
components are comparable.

The experiment set up by the Riga group is sketched in figure 1b. Their flow
is driven by a single propellor, generating helical flow down a central cylindrical
cavity. The return flow is in an annulus surrounding this central flow. The geometry
of the apparatus as well as mean flow velocity profiles have been optimized in order
to decrease the dynamo threshold. In particular, it has been found that adding an
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outer cylindrical region with liquid sodium at rest significantly decreases Rmc. This
can be understood if the axial mean flow as well as the rotation rate of the azimuthal
mean flow are nearly constant except in boundary layers close to the inner cylinder.
Then, the induction equation being invariant under transformation to a rotating
reference frame and under Galilean transformations, the presence of some electrical
conductor at rest is essential as it is in the case of the Ponomarenko dynamo. The
three cylindrical chambers are separated by thin stainless steel walls, which were
wetted to allow currents to flow through them.

Figure 3 displays the growth and saturation of a time periodic magnetic field at
high enough rotation rate. The nature of the bifurcation as well as dynamo growth
rates have been found in good agreement with kinematic theory (Gailitis et al., 2002)
that predicts a Hopf bifurcation of convective nature at onset. In addition, the Riga
group has made detailed observations of the magnetic field saturation value and the
power dissipation needed to drive the flow. These measurements give indications of
the effect of Lorentz forces in the flow in order to reach the saturated state. It has
been found that one effect of the Lorentz force is to drive the liquid sodium in the
outer cylinder in global rotation, thus decreasing the effective azimuthal velocity of
the inner flow and therefore its dynamo capability. Dynamo generation does also
correspond to an increase in the required mechanical power. However, a puzzling
result is displayed in figure 3: the amplitude of the magnetic field for supercritical
rotation rates does not seem to show the universal

√
Rm −Rmc law. In addition, the

form of the law seems to depend on the location of the measurement point. This is
to some extent due to the absence of temperature control in the Riga experiment.
Variations in temperature modify the fluid parameters (electrical conductivity, vis-
cosity and density) and this should be taken into account by plotting the results in
dimensionless form (Fauve & Lathrop, 2005).
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Figure 3: (Left) Time recording of the magnetic field from the Riga experiment. The dashed line
gives the value of the rotation rate. The amplitude of roughly sinusoidal oscillations (not visible
with the resolution of the picture) increases and then saturates when the rotation rate is increased
above threshold (about 1850 rpm). The amplitude of saturation increases when the rotation rate
is increased further. The dynamo switches off when the rotation rate is decreased below threshold.
(Right) Magnetic field amplitude as the rotation rate is raised above the critical rotation rate.
(Figures from Gailitis et al., 2001).



62 S. Fauve Séminaire Poincaré

3.3 What have been learnt from the Karlsruhe and Riga experiments

Although there were no doubts about self-generation of magnetic fields by Roberts’
or Ponomarenko-type laminar flows, these experiments have displayed several inter-
esting features:

• the observed thresholds are in rather good agreement with theoretical pre-
dictions (Busse et al. 1996, Rädler et al., 1998, Gailitis et al., 2002) made by
considering only the laminar mean flow and neglecting the small-scale turbulent
fluctuations that are present in both experiments.

• The nature of the dynamo bifurcation, stationary for the Karlsruhe experiment
or oscillatory (Hopf) in the Riga experiment, is also in agreement with laminar
models.

• On the contrary, the saturation level of the magnetic field, due to the back re-
action of the Lorentz force on the flow, cannot be predicted with a laminar flow
model and different scaling laws exist in the supercritical dynamo regime de-
pending on the magnitude of the Reynolds number (Pétrélis and Fauve, 2001).

• Although secondary instabilities generating large scale dynamics of the mag-
netic field have not been observed in the Karlsruhe and Riga experiments, small
scale turbulent fluctuations of the magnetic field are well developed.

These observations raise the following questions:

• What is the effect of turbulence, or of the magnitude of the Reynolds number,
on the dynamo threshold Rmc? Is it possible to observe how Rmc depends on
Pm for a dynamo generated by a strongly turbulent flow (by changing Pm in
experiments with a given flow at different temperatures for instance)?

• What is the mechanism responsible for magnetic field fluctuations in the vicinity
of the dynamo threshold: an on-off intermittency effect (Sweet et al., 2001) or
the advection of the mean magnetic field by the turbulent flow?

• What is the mechanism for field reversals? Is it possible to observe them in
laboratory experiments?

4 The VKS experiment

4.1 A bifurcation from a strongly turbulent flow

Using the Reynolds decomposition, we can write for a turbulent velocity field

V(r, t) = V(r) + ṽ(r, t), (7)

where V(r) is the mean flow and ṽ(r, t) are the turbulent fluctuations. The over-
bar stands for a temporal average in experiments. Thus, both the mean flow V(r)
and the fluctuations ṽ(r, t) are involved in the induction term of (1) and one has
to understand their respective effects on the dynamo process. The Karlsruhe and
Riga experiments have been designed by geometrically constraining a mean flow
V(r) known for its efficient dynamo action, the G. O. Roberts’ flow (respectively
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the Ponomarenko flow) for the Karlsruhe (respectively Riga) experiment. Turbu-
lent fluctuations, roughly an order of magnitude smaller than the mean flow, have
been discarded, and the experimentally observed dynamo threshold as well as the
geometry of the mean magnetic field, have been found in good agreement with these
predictions, based only the mean flow.

As explained in the introduction, one of my early motivations for dynamo exper-
iments have been the study of a system that displays a bifurcation from a strongly
turbulent regime. Thus, I chose to try to generate a dynamo using a von Karman
swirling flow, i.e., the flow generated in a cylinder by the motion of two coaxial ro-
tating discs (Zandbergen & Dijkstra 1987). When the discs are operated in counter-
rotation, these flows display various qualities of interest for a potential dynamo: a
strong differential rotation and the lack of planar symmetry which are key ingre-
dients for a closed loop induction by ω and α effects (Moffatt 1978). As shown by
measurements of pressure fluctuations, large vorticity concentrations are produced
(Fauve et al. 1993, Abry et al. 1994) which may also act in favour of the amplifi-
cation of the magnetic field if the classical analogy between vorticity and magnetic
field production is to be believed. The choice of VK flows was thus motivated by the
hope that the above features will make possible the generation a magnetic field by
a strongly turbulent flow, with fluctuations as large, or even larger than the mean
flow.

4.2 The VKS experimental set-up
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Figure 4: Experimental setup. (Figure from (Monchaux et al. 2009).

The VKS acronym stands for “von Kármán Sodium”. The experiments has been
developed in a collaborative work involving several french institutions: Direction des
Sciences de la Matière of CEA, ENS-Lyon and ENS-Paris and have been realized in
CEA/Cadarache-DEN/DTN. The VKS2 experiment is an evolution of a first design,
VKS1 (Bourgoin et al. 2002, Pétrélis et al. 2003) which did not show any dynamo
action. A sketch of the VKS2 set-up is displayed in figure 4. The VK flow is generated
in the inner cylinder of radius 206 mm and length 524 mm by two counter rotating
discs of radius 154 mm and 371 mm apart. The disks are made of soft iron and are
fitted with 8 curved blades of height h = 41.2 mm. An annulus of inner diameter
175 mm and thickness 5 mm is attached along the inner cylinder in the mid-plane
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between the disks.
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Figure 5: Three components of the magnetic field generated by dynamo action measured at point
P1. Left: growth of the magnetic field as the impellers’ rotation rate F is increased from 10 to 22 Hz.
Right: Sketch of the geometry of the mean magnetic field; toroidal component of the magnetic field
(red), poloidal component (blue). (Figures from Monchaux et al. 2007 and Ravelet et al. 2008).

This last configuration enabled the observation of a dynamo field as shown in
figure 5 (Monchaux et al. 2007). As the rotation rate of the discs is increased from
10 to 22 Hz, one observes at the location (1) (see figure 4) the growth of a magnetic
field: the azimuthal component acquires a nonzero average value of order 40 Gauss
with relatively strong fluctuations. The two other components display small average
values but fluctuate with rms values of order 5 gauss. Even though the fluctuation
level is much higher than in the Karlsruhe or Riga experiments, we call this dynamo
stationary in the sense that it is not displaying any kind of time-periodicity or
reversals.

Measurements of the magnetic field are fairly well resolved in the radial direction
but have been performed only at a few axial and azimuthal locations (see figure 4
left). Thus, although we cannot record higher order modes, we observe that the
mean magnetic field involves a leading order dipolar component with its axis along
the rotation axis, BP, together with a related azimuthal component Bθ (see figure
5 right).

The amplitude of the magnetic field as a function of the magnetic Reynolds
number is displayed in figure 6. Rm has been defined as Rm = Kµ0σR

2Ω where
R is the radius of the cylinder and Ω the rotation rate of the discs. K = 0.6 is a
numerical coefficient relating ΩR to the maximum velocity in the flow. With this
definition the critical magnetic Reynolds number is close to 31 as can be seen from
figure 6 (left) when the discs are rotated such that the leading edge of the curved
blades is the convex one. The threshold is higher for the other direction (see figure 6
right). Note that the two polarities of the magnetic field can be observed.

4.3 A possible dynamo mechanism for the VK flow

The mean VK flow has the following characteristics: the fluid is ejected radially
outward by the discs; this drives an axial flow toward the discs along their axis and
a recirculation in the opposite direction along the cylinder lateral boundary. In the
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Figure 6: Left: two independent realizations at same frequency above threshold showing opposite
field polarities. Right: magnetic field amplitude < B2 >1/2=
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are counterrotating at equal rotation rates, in the positive direction shown in figure 4 (closed blue
circles) or in the opposite direction, i.e. with the blades on the impellers moving in a ‘scooping’ or
negative direction (open red squares). (Figures from Monchaux et al. 2009).

case of counter-rotating impellers, the presence of a strong axial shear of azimuthal
velocity in the mid-plane between the impellers generates a high level of turbulent
fluctuations, roughly of the same order as the mean flow. It is thus unlikely that the
fluctuations ṽ can be neglected compared to V in (1). It has been indeed observed
that when the discs counter-rotate with the same frequency, a mean magnetic field
is generated with a dominant axial dipolar component. Such an axisymmetric mean
field cannot be generated by the mean flow alone, V(r, x), that would give a non
axisymmetric magnetic field according to Cowling theorem (Moffatt 1978). Non
axisymmetric fluctuations ṽ(r, θ, x) thus play an essential role. As explained by
Pétrélis et al. (2007), a possible mechanism is of α − ω type, the α-effect being
related to the helical motion of the radially expelled fluid between two successive
blades of the impellers, and the ω-effect resulting from differential rotation due to
counter-rotation of the impellers. This has been modeled using mean field MHD
with an ad hoc α-effect related to this helical motion (Laguerre et al. 2009). The
α− ω mechanism has been illustrated without using mean field MHD by Gissinger
(2009). When only the mean field velocity is taken into account in a numerical
simulation of the induction equation, the generated magnetic field is an equatorial
dipole as displayed in figure 7 (left) and observed earlier in several numerical works
(Marié et al. 2003, Bourgoin et al. 2004, Ravelet et al. 2005, Stefani et al. 2006).
When a non axisymmetric velocity component that mimics helical flow along the
blades is taken into account, it is found that an axial dipole becomes the preferred
growing mode (see figure 7 right) in agreement with the VKS experiment. Thus, the
VKS dynamo is not generated by the mean flow alone in contrast to Karlsruhe and
Riga experiments, and non-axisymmetric fluctuations play an essential role in the
dynamo process.

Another very important experimental fact is that the VKS dynamo has been
observed so far only when impellers made of soft iron have been used. More precisely,
one impeller at least should be made of soft iron and, it should be the rotating one
if one of the impellers is at rest. It has been shown that magnetic boundary condi-
tions corresponding to the high permeability limit significantly decrease the dynamo
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Figure 7: Geometry of the dynamo mode obtained by kinematic numerical simulations: (left) an
equatorial dipole is generated by the mean flow alone. (Right) When a non axisymmetric velocity
component is taken into account, an axial dipole is generated (Figures from Gissinger 2009).

threshold (Gissinger et al. 2008, Gissinger 2009). However, it has been also claimed
that other mechanisms could play a role: coupling with the magnetization inside
the discs (Pétrélis et al. 2007), a possible additional source of ω-effect (Verhille et
al. 2010) and the effect of a spatially periodic magnetic permeability along the az-
imuthal direction related to the blades (Giesecke et al. 2010). The later is the only
one that has been simulated and found to decrease the dynamo threshold further.
However, recent experiments have shown that a spatially periodic magnetic perme-
ability alone is not enough to generate a dynamo, thus these simulations deserve to
be checked.

The essential role of ferromagnetic blades (in addition to ferromagnetic discs)
can be also explained using the following simple argument: any azimuthal magnetic
field is refracted when it hits the blades and channeled inside each blade. It is con-
veyed along the blades and should emerge near the center with an axial component
in order to satisfy ∇ · B = 0. According to this simple mechanism, ferromagnetic
blades convert some azimuthal field component into the poloidal one and thus pro-
vide some additional contribution to the α-effect.

4.4 Dynamics of the magnetic field in the VKS experiment

As said above, the magnetic field generated by impellers counter-rotating at the
same speed is statistically stationary. No secondary bifurcation is observed up to
the maximum possible speed allowed by the available motor power. The dynamics
are much richer when the impellers are rotated at different speed as displayed by
the parameter space (see figure 8).

Different dynamical regimes are observed when, starting from impellers rotating
at 22 Hz, the frequency of an impeller, say F2, is decreased, F1 being kept constant.
As said above, we first observe a statistically stationary dynamo regime with a dom-
inant azimuthal mean field close to the flow periphery (see figure 9, top left). This
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Figure 8: Dynamo regimes observed when the rotation frequencies F1 and F2 of the impellers
are varied: no dynamo (green ◦; B . 10G for more than 180 s), statistically stationary dynamos
(blue •); oscillatory dynamos (green squares); limit cycles (red squares), magnetic reversals (orange
squares), bursts (purple triangles) and transient magnetic extinctions (⊗). (Figures from Ravelet
et al. 2008).

corresponds to the trace labelled 22−22 in the (Br, Bθ) plane of figure 9 (middle). As
the frequency of the slower impeller is decreased, we obtain other stationary dynamo
regimes for which the radial component of the mean field increases and then becomes
larger than the azimuthal one (22−20 and 22−19). When we tune the impeller fre-
quencies to 22 and 18.5 Hz respectively, a global bifurcation to a limit cycle occurs.
We observe that the trajectory of this limit cycle goes through the location of the
previous fixed points related to the stationary regimes. Direct time-recordings of the
magnetic field, measured at the periphery of the flow in the mid-plane between the
two impellers, are displayed in figure 9 (bottom). We propose to ascribe the strong
radial component (in green) that switches between ±25 G to a quadrupolar mode
(see figure 9, top right). Its interaction with the dipolar mode that is the dominant
one for exact counter-rotation, gives rise to the observed relaxation dynamics. The
relaxation oscillation is observed in a rather narrow range of impeller frequency F2

(less than 1 Hz). When the frequency of the slowest impeller in decreased further,
statistically stationary regimes are recovered (22 − 18 to 22 − 16.5 Hz in figure 9,
middle). They also correspond to fixed points located on the trajectory of the limit
cycle, except for the case 22− 16.5 Hz that separates from it.

When the rotation frequency of the slowest impeller is decreased further, new
dynamical regimes occur. One of them consists in field reversals (Berhanu et al.
2007). The three components of the magnetic field reverse at random intervals (fig-
ure 10, left). The average length of phases with given polarity is two orders of
magnitude larger than the duration of a reversal that corresponds to an ohmic diffu-
sion time scale (τσ = µ0σL

2 ∼ 1 s on the scale L of the experiment). We emphasize
that the trajectories connecting the B and −B states are robust despite the strong
fluctuations of the flow. This is displayed in figure 10 (right): the time evolution
of reversals from up to down states can be superimposed by shifting the origin of
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Figure 9: Sketch of the axial dipolar (a) and quadrupolar (b) magnetic modes. (c) location of
the different states in the (Br, Bθ) plane: fixed points corresponding to the stationary regimes
for frequencies (F1, F2) ; limit cycle (L.C.) observed for impellers counterrotating at different
frequencies (22, 18.5)Hz (red). The magnetic field is time averaged over 1 s to remove high frequency
fluctuations caused by the turbulent velocity fluctuations. (d) time recording of the components of
the magnetic field for frequencies (22, 18.5)Hz. (Figures from Monchaux et al. 2009).

time such that B(t = 0) = 0 for each reversal. Down-up reversals are superimposed
in a similar way on up-down ones by plotting −B instead of B. The time evolu-
tion averaged on 12 successive reversals can be represented as the trajectory of the
system in phase space using a plot of [Bθ(t), Bθ(t − δt)] where δt = 1 s ∼ τσ (see
figure 11) . For each reversal, the field first decays exponentially with a rate 0.8 s−1.
The system then moves on a faster time scale to reach the state with opposite po-
larity after displaying an overshoot in the direct time recording (figure 10, right). In
phase space, this is related to the fact that the trajectory has to circle around each
fixed point in order to reach it. The trajectory in phase space is amazingly robust
despite strong velocity fluctuations. These fluctuations put an upper bound on the
duration of phases with a given polarity. However, this does not suppress the scale
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Figure 10: Reversals of the magnetic field generated by driving the flow with counterrotating im-
pellers at frequencies F1 = 16 Hz and F2 = 22 Hz. (a): Time recording of the three magnetic field
components at P2: axial (x) in blue, azimuthal (y) in red and radial (z) in green. (b): superimposi-
tion of the azimuthal component for successive reversals from negative to positive polarity together
with successive reversals from positive to negative polarity with the transformation B → −B. For
each of them the origin of time has been shifted such that it corresponds to B = 0. (Figures from
Monchaux et al. 2009).

separation between the length of the phases with given polarity and the duration of
a reversal. In that sense, turbulent fluctuations have a weak effect on the large scale
dynamics of the magnetic field.
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Figure 11: Plot of a planar cut of the phase space [Bθ(t), Bθ(t − δt)] where δt = 1 s. The thick
dots correspond to the two polarities of the magnetic field in its nearly stationary phases. The
trajectories of reversals are represented in black. One excursion (together with the symmetric one)
is represented in red (data from Berhanu et al., courtesy of E. Dormy).

When the magnetic field amplitude starts to decrease, either a reversal occurs,
or the magnetic field first decays and then grows again with its direction unchanged.
Similar sequences, called excursions, are also observed in recordings of the Earth’s
magnetic field. The phase space representation of figure 11 is very appropriate to
display them. One observes that the trajectory of an excursion is first similar to the
one of reversals during their slow phase.

Other dynamical regimes are displayed in figure 12. First, it is shown that
there is a continuous transition from random reversals to noisy periodic behavior
(top left and right) without any modification of the mechanical driving of the flow.
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Only the sodium temperature, and thus the Reynolds numbers are varied. Since the
kinetic Reynolds number of the flow is very large, it is unlikely that its variation
strongly affects the large scale flow. Observing nearly periodic oscillations rules out
the naive picture in which reversals would only result from turbulent fluctuations
driving the system away from a metastable state. For rotation frequencies 22 − 15
Hz, the magnetic field displays intermittent bursts (figure 12, bottom right). The
most probable value of the azimuthal field is roughly 20 G but bursts up to more
than 100 G are observed such that the probability density function of the field has
an exponential tail (not shown). For rotation frequencies 21− 15 Hz, the same type
of dynamics occur, but in a symmetric fashion, both positive and negative values of
the field being observed (bottom left).
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Figure 12: Top: time recordings of the azimuthal component of the magnetic field observed for im-
pellers rotating at (22-16) Hz. The sodium temperature is 131oC (left) and 147oC (right). Bottom:
time recordings of the azimuthal component of the magnetic field observed for impellers rotating
at (22-15) Hz (left), (21-15) Hz (right). (Figures from Monchaux et al. 2009).

The different dynamical regimes of the magnetic field generated by the VKS
flow display several characteristic features of low dimensional dynamical systems.
These dynamics will be understood below as the ones resulting from the competition
between a few nearly critical modes. We emphasize that what is remarkable in these
experiments is the robustness of these low dimensional dynamical features that are
not smeared out despite large turbulent fluctuations of the flow that generates the
dynamo field.

5 Low dimensional models of field reversals

It has been known since the work of Brunhes (1906) that Earth’s magnetic field
remains roughly parallel to the same direction, almost its rotation axis, for long
durations (100000 years or much longer) but from time to time, it flips with the
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poles reversing sign. Polarity reversals are also observed for the magnetic field of the
sun. Both its large scale dipolar component as well as the intense concentrations of
magnetic field observed at smaller scales in the sun spots reverse sign roughly every
11 years.

Flows in the interiors of planets or stars have huge kinetic Reynolds numbers.
For instance, Re ∼ 109 in the Earth’s liquid core or Re ∼ 1015 in the convective zone
of the Sun. These flows being strongly turbulent, we would expect them to advect
and distort the magnetic field lines in a very complicated way both in space and
time. Thus, it is puzzling that the generated magnetic fields display a large scale
coherent component with rather simple dynamics: a dominant dipolar component,
roughly aligned with the rotation axis for Earth and an oscillatory magnetic field
with well characterized spatial features for the sun (Zeldovich et al. 1983).

As just described, qualitatively similar dynamics have been observed in the
VKS experiment. We will first shortly review the different models that have been
proposed for the dynamics of the magnetic fields of the Earth and the Sun. Then,
we will present in section 6 a simple model of the dynamics observed in the VKS
experiment.

5.1 Disc dynamos and truncations of the MHD equations

The first simple models of field reversals involved couple rotor disc dynamos (Rik-
itake 1958, Allan 1962, Cook and Roberts 1970) or even a Bullard disc dynamo
when a shunt is added (Malkus 1972, Robbins 1977). The equations for the cur-
rents are of same type as Lorenz model (Lorenz 1963). When the two solutions
±I0 related one to the other by the B → −B symmetry are unstable and chaotic
regimes occur, these systems stay for a while in the vicinity of one solution and
then flips to the neighborhood of the other. These transitions occur in a random
fashion and this can be considered as reversal dynamics. However, both the shape
of the transitions displayed by direct recordings or in the phase space as well as
their statistical properties differ from the experimental observations of field rever-
sals and from paleomagnetic records. In addition, equations governing disc dynamos
strongly differ from full MHD equations and cannot be obtained form them in any
consistent approximation. It is however possible to relate Rikitake equations with
a simple model of an α − ω dynamo (Moffatt 1978). It has been also shown by
Nozières (1978) that equations similar to the ones of disc dynamos can be obtained
by truncating the full MHD equations. Keeping two magnetic modes of the diffusion
operator and one velocity mode, equations similar (but not identical) to Rikitake
(1958) are found. Nozières then describe reversals as a relaxation limit cycle between
two quasi-stationary states related by the B → −B symmetry.

The main problem with truncated systems is that they usually describe dynam-
ics that do not persist when higher modes are taken into account. The most famous
example is the Lorenz attractor (Lorenz 1963) obtained from a drastic truncation of
a Rayleigh-Bénard convection problem. Although its discovery has been one of the
major steps of dissipative dynamical system theory and triggered a lot of studies, its
chaotic dynamics does not subsist when higher modes of the convection problem are
kept. The dynamo problem is even more sensitive to truncation. The growth of the
the magnetic field itself can result from a truncation of the velocity field even when
a fair enough number of modes are kept whereas no dynamo exists when the resolu-
tion is good enough. It seems therefore unlikely that truncated systems involving a
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few coupled velocity and magnetic modes would correctly describe reversals of the
magnetic field.

5.2 Normal forms

A different class of models, also involving a few coupled differential equations, is
based on the assumption that several magnetic eigenmodes are competing above
the dynamo threshold. These models have been mostly used in the context of low-
order stellar dynamo models and more particularly to describe the solar cycle and
its slow modulation. Tobias et al. (1995) take into account two magnetic modes
(a poloidal and a toroidal one) undergoing a Hopf bifurcation in the framework
of Parker’s model (Parker 1955). They assume that the velocity field generating
the magnetic field is close to a saddle-node bifurcation and couple the marginal
velocity mode to the magnetic modes in order to obtain a third order system which
displays periodic, quasiperiodic and chaotic behaviours when the system parameters
are varied. Wilmot-Smith et al. (2005) obtain similar results but with a coupling
term that does not break the B → −B symmetry.

Knobloch & Landsberg (1996) consider a different model that does not involve
marginal velocity modes but two magnetic modes, a dipolar and a quadrupolar one,
both generated through a Hopf bifurcation. Taking into account 1 : 1 resonant cou-
pling terms, they find aperiodic regimes that can also represent the modulation of
the cyclic activity of the solar magnetic field. Finally, Knobloch et al. (1998) as-
sume the existence of two velocity modes, symmetric (respectively antisymmetric)
with respect to the equatorial plane, and couple them to the dipolar and quadrupo-
lar magnetic modes of the previous model. They show that two different types of
modulation of the cyclic activity can be described.

In the framework of normal forms, it has been proposed to relate reversals
to trajectories close to heteroclinic cycles that connect unstable fixed points ±B
(Armbruster et al. 2001, Chossat & Armbruster 2003). Heteroclinic cycles provide a
simple framework to describe separation of time scales between quasi-steady states
with a given polarity, related to the slowing down of the system in the vicinity of a
saddle point, and rapid reversal events. Heteroclinic cycles are generally structurally
unstable except in the presence of symmetries that lead to invariant subspaces of the
dynamical system. Melbourne et al. (2001) try to describe the dynamics of Earth’s
magnetic field by writing amplitude equations for an equatorial dipole coupled to
axial dipole and quadrupole. This model has heteroclinic cycles but no connection
of states with opposite polarities except when additional coupling terms that break
the symmetries are taken into account. Strictly speaking, a stable heteroclinic cycle
connecting ±B cannot describe reversals because the period of the trajectory in
phase space goes to infinity as the trajectory is attracted on the cycle. However, an
arbitrary amount of noise is enough to kick the system away from the saddle points
and to generate random reversals with a finite mean period (Stone & Holmes 1990).

5.3 Metastable states in the presence of external noise

Other models rely on external noise in a stronger way. They start from a dipolar
magnetic mode with amplitude D(t) that bifurcates supercritically and model the
effect of hydrodynamic turbulence through random fluctuations of the coefficients
of the dynamical system governing D and the amplitudes of the stable modes in the
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vicinity of the bifurcation threshold. Fluctuations only in the amplitude equation,
Ḋ = µD −D3, i.e. a growth rate µ that involves a noisy component, does not lead
to reversals between the two stationary solutions D = ±√µ. However, taking into
account that D is coupled with the amplitudes of the stable modes which are also
excited by fluctuations, can lead to reversals (Schmitt et al. 2001). D behaves as
the position of a strongly damped particle driven by random noise in a two-well
potential. The crucial role of damped modes has been emphasized further by Hoyng
& Duistermaat (2004). The reversals are triggered by large fluctuations of damped
modes driven by noise. These modes act on D as an effective additive noise.

Recent numerical simulations have modelled hydrodynamic fluctuations with a
noisy α-effect (Giesecke et al. 2005, Stefani & Gerbeth 2005, Stefani et al. 2007). The
deterministic part of this model can generate periodic relaxation oscillations with
the system slowing down in the vicinity of two states with opposite polarities ±B.
In this respect, it belongs to the class of systems described by Nozières (1978). The
addition of external noise is thus crucial to generate random reversals. It is likely that
the phenomenology of this model is related to the proximity of a codimension-two
point that results from two interacting modes with different radial structures.

5.4 Hydrodynamic mechanisms and direct numerical simulations

The above descriptions of reversals assume the existence of some large scale dom-
inant modes of the magnetic field. The random dynamics of reversals are either of
deterministic nature (low dimensional chaos) or result from the addition of external
noise that describes hydrodynamic fluctuations.

A different approach, initiated by Parker (1969), consists in trying to identify
the nature of the fluctuations of the velocity field that is required to generate a
reversal. In the case of Earth, it is believed that the magnetic field is generated
through an α-ω mechanism, ω being related to differential rotation and α resulting
from the existence of a mean number of cyclonic convective cells in Earth’s core,
that fluctuate both in number and position. When strong enough, these fluctuations
can reverse the magnetic field (Parker 1969, Levy 1972).

Another mechanism has been also proposed by Parker (1979). It follows from
the observation by Roberts (1972) that a meridional circulation favors stationary
dipolar α-ω dynamos in spherical geometries. Parker (1979) suggested that if the
meridional circulation is altered for a while, an oscillatory magnetic mode may be-
come dominant and generates a reversal of the magnetic field. It has been claimed
later that this mechanism can be also suggested from palaeomagnetic data (Mc-
Fadden & Merrill 1995). Numerical simulations of the MHD equations in a rotating
sphere have displayed this in a clear-cut way: it has been shown by Sarson & Jones
(1999) and Sarson (2000) that the random emission of poleward light plumes, or
“buoyancy surge”, generates fluctuations of the meridional flow that can trigger a
reversal. They also found that this mechanism is not affected much by the back
reaction of the magnetic field on the flow and does result from the proximity in
parameter space of stationary and time periodic dynamo modes, depending on the
intensity of the meridional flow. A process also related to convective plumes has
been observed by Wicht & Olson (2004). They found that a magnetic field with an
opposite polarity is produced locally in the convective plumes and that the transport
of this reversed flux can generate a reversal. They also showed that the observed
reversals are almost unchanged when the Lorentz force is removed from the numer-
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ical code. Other advection processes of the magnetic field by the flow have been
studied in detail by Aubert et al. (2008). It should be noted that all these numerical
simulations have been performed with large values of Pm (1 < Pm < 20). Local
modifications of the magnetic field by the flow are likely to play a less important
role for small values of Pm because they are strongly damped by ohmic diffusion.

Since 1995 (Glatzmaier & Roberts 1995), a lot of three dimensional numerical
simulations of the MHD equations in a rotating sphere have been able to simulate
a self-consistent magnetic field that displays reversals (see the reviews by Dormy et
al. 2000, Roberts & Galtzmaier 2000). However, it has been emphasized that most
relevant dimensionless parameters that can be achieved in direct simulations are
orders of magnitude away from their value in Earth’s core or laboratory experiments.
Even in the limited range accessible to direct simulations, it has been shown that
the geometry of the generated magnetic field and the properties of field reversals
can strongly depend on the values of the relevant dimensionless numbers (Kutzner
& Christensen 2002, Busse & Simitev 2006). Thus, one may conclude as in Coe et
al. (2000) that “each reversal in the simulations has its own unique character, which
can differ greatly in various aspects from others”. However, we emphasize that a lot
of these numerical simulations also display similar properties at a more global level,
if one considers the how the symmetries of the flow and the magnetic field evolve
during a reversal. We will discuss this aspect in the next section.

6 A simple model for the dynamics observed in the VKS experiment

The most striking feature of the VKS experiment is that time dependent magnetic
fields are generated only when the impellers rotate at different frequencies (Berhanu
et al. 2007, Ravelet et al. 2008). We have shown in Pétrélis & Fauve (2008) that this
is related to the additional invariance under Rπ when F1 = F2 (rotation of an angle
π along any axis in the mid-plane). We indeed expect that in that case, the modes
involved in the dynamics are either symmetric or antisymmetric. Such modes are
displayed in figure 13. A dipolar mode is changed to its opposite by Rπ, whereas a
quadrupolar mode is unchanged.
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Figure 13: Possible eigenmodes of the VKS experiment. The two discs counter-rotate with frequency
F1 and F2. Left: magnetic dipolar mode. Right: magnetic quadrupolar mode. Poloidal (green) and
toroidal (red) components are sketched.

We assume that the magnetic field is the sum of a dipolar component with an
amplitude D and a quadrupolar one, Q. We define A = D + i Q and we assume
that an expansion in power of A and its complex conjugate Ā is pertinent close
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to threshold in order to obtain an evolution equation for both modes. Taking into
account the invariance B→ −B, i.e. A→ −A, we obtain

Ȧ = µA+ νĀ+ β1A
3 + β2A

2Ā+ β3AĀ
2 + β4Ā

3 , (8)

where we limit the expansion to the lowest order nonlinearities. In the general case,
the coefficients are complex and depend on the experimental parameters.

Symmetry of the experiment with respect to Rπ when the discs exactly counter-
rotate, amounts to constraints on the coefficients. Applying this transformation to
the magnetic modes, changes D into −D and Q into Q, thus A→ −Ā. We conclude
that, in the case of exact counter-rotation, all the coefficients are real. When the
frequency difference f = F1−F2 is increased from zero, we obtain that the real parts
of the coefficients are even and the imaginary parts are odd functions of f . When
the coefficients are real, the growth rate of the dipolar component is µr + νr and
that of the quadrupolar component is µr − νr. The dipole being observed for exact
counter-rotation implies that νr > 0 for f = 0. By increasing f , we expect that νr
changes sign and favors the quadrupolar mode according to the experimental results
(see figure 9). We will explain in the next section how modifying the parameters of
(8) leads to bifurcation to time dependent solutions.

6.1 A mechanism for oscillations and reversals

As shown in Pétrélis & Fauve (2008), the planar system (8) explains the dynamical
regimes observed so far in the VKS experiment (Ravelet et al. 2008). It is invariant
under the transformation B→ −B. Thus, in the case of counter-rotating impellers,
F1 = F2, it has two stable dipolar solutions ±D and two unstable quadrupolar so-
lutions ±Q. When the frequency difference f is increased, these solutions become
more and more mixed due to the increase of the strength of the coupling terms
between dipolar and quadrupolar modes. Dipolar (respectively quadrupolar) solu-
tions get a quadrupolar (respectively dipolar) component and give rise to the stable
solutions ±Bs (respectively unstable solutions ±Bu) displayed in figure 14. When
f is increased further, a saddle-node bifurcation occurs, i.e. the stable and unstable
solutions collide by pairs and disappear. This generates a limit cycle that connects
the collision point with its opposite. This result can be understood as follows: the
solution B = 0 is unstable with respect to the two different fixed points, and their
opposite. It is an unstable point, whereas one of the two bifurcating solutions is a
stable point, a node, and the other is a saddle. If the saddle and the node collide,
say at Bc, what happens to initial conditions located close to these points? They
cannot be attracted by B = 0 which is unstable and they cannot reach other fixed
points since they just disappeared. Therefore the trajectories describe a cycle. The
associated orbit contains B = 0 since, for a planar problem, in any orbit, there is a
fixed point. Suppose that the orbit created from Bc is different from the one created
by −Bc. These orbits being images by the transformation B → −B, they must
intersect at some point. Of course, this is not possible for a planar system because
it would violate the uniqueness of the solutions. Therefore, there is only one cycle
that connects points close to Bc and −Bc.

This provides an elementary mechanism for field reversals in the vicinity of a
saddle-node bifurcation. First, in the absence of fluctuations, the limit cycle gen-
erated at the saddle-node bifurcation connects ±Bc. This corresponds to periodic
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Figure 14: A generic saddle-node bifurcation in a system with the B → −B invariance: below
threshold, fluctuations can drive the system against its deterministic dynamics (phase a). If the
effect of fluctuations is large enough, this generates a reversal (phases b and c). Otherwise, an
excursion occurs (phase a’). (Figure from Pétrélis & Fauve 2008).

reversals. Slightly above the bifurcation threshold, the system spends most of the
time close to the two states of opposite polarity ±Bc. Second, in the presence of
fluctuations, random reversals can be obtained slightly below the saddle-node bifur-
cation. Bu being very close to Bs, even a fluctuation of small intensity can drive the
system to Bu from which it can be attracted by −Bs, thus generating a reversal.

The effect of turbulent fluctuations on the dynamics of the two magnetic modes
governed by (8) can be easily modeled by adding some noisy component to the
coefficients (Pétrélis & Fauve 2008). Random reversals are displayed in figure 15
(top left). The system spends most of the time close to the stable fixed points ±Bs.
We observe in figure 15 (top right) that a reversal consists of two phases. In the
first phase, the system evolves from the stable point Bs to the unstable point Bu

(in the phase space sketched in figure 14). The deterministic part of the dynamics
acts against this evolution and the fluctuations are the motor of the dynamics. That
phase is thus slow. In the second phase, the system evolves from Bu to −Bs, the
deterministic part of the dynamics drives the system and this phase is faster.

The behaviour of the system close to Bs depends on the local flow. Close to the
saddle-node bifurcation, the position of Bs and Bu defines the slow direction of the
dynamics. If a component of Bu is smaller than the corresponding one of Bs, that
component displays an overshoot at the end of a reversal. In the opposite case, that
component will increase at the beginning of a reversal. For instance, in the phase
space sketched in figure 14, the component D decreases at the end of a reversal and
the signal displays an overshoot. The component Q increases just before a reversal.

For some fluctuations, the second phase does not connect Bu to −Bs but to Bs.
It is an aborted reversal or an excursion in the context of the Earth dynamo. Note
that during the initial phase, a reversal and an excursion are identical. In the second
phase, the approaches to the stationary phase differ because the trajectory that links
Bu and Bs is different form the trajectory that links Bu and −Bs. In particular, if
the reversals display an overshoot this will not be the case of the excursion (see
figure 15 top right) and the sketch of the cycle in figure 14).

Finally, it is illustrated in figure 15 (bottom left and right), that the other
dynamical regimes of the VKS experiment, such as symmetric or asymmetric inter-
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mittent bursts, can be described with the same model (Pétrélis & Fauve 2008).
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Figure 15: Time recordings obtained from equation (8) displaying different dynamics of the mag-
netic field, as observed in the VKS experiment: reversals, symmetric bursts and asymmetric bursts
(Figures from Pétrélis & Fauve 2008).

6.2 A simple model for Earth’s magnetic field reversals

The above model of reversals of magnetic field in the vicinity of a saddle-node bifur-
cation in a system with the invariance B→ −B explains many intriguing features of
the reversals of Earth magnetic field (Pétrélis et al. 2009). The most significant out-
put is that the mechanism predicts specific characteristics of the field obtained from
paleomagnetic records (Valet et al. 2005), in particular their asymmetry: the Earth’s
dipole decays on a slower time scale than it recovers after a reversal. In addition,
it displays an overshoot that immediately follows the reversals. Other characteristic
features such as excursions as well as the existence of superchrons are understood
in the same framework.

Although the symmetries of the flow in the Earth’s core strongly differ from the
ones of the VKS experiment, dipolar and quadrupolar modes can be defined with
respect to equatorial symmetry such that model (8) can be transposed for Earth’s
magnetic field. From an analysis of paleomagnetic data, it has been proposed that
reversals involve an interaction between dipolar and quadrupolar modes (McFad-
den et al. 1991). We thus obtain an interesting prediction about the liquid core in
that case: if reversals involve a coupling of the Earth’s dipole with a quadrupolar
mode, then this requires that the flow in the core has broken mirror symmetry. In
contrast, another scenario has been proposed in which the Earth’s dipole is coupled
to an octupole, i.e., another mode with a dipolar symmetry. This does not require
additional constraint on the flow in the core in the framework of our model. In any
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case, the existence of two coupled modes allows the system to evolve along a path
that avoids B = 0. In physical space, this means that the total magnetic field does
not vanish during a reversal but that its spatial structure changes.

7 Different morphologies for field reversals

We have shown in the previous section that an efficient way to reverse an axial dipo-
lar field is to couple it with another mode. In the case of axisymmetric mean fields,
an axial quadrupole is a natural choice. However, one can imagine that it can be also
possible to involve a non-axisymmetric mode in the dynamics of reversals. In that
case, the leading order choice would be an equatorial dipole. This type of scenario
has been recently observed in numerical simulations of a flow driven by counter-
rotating propellers in a spherical domain. This geometry displays many similarities
with the one of the VKS experiment (in both cases, a cylindrical symmetry is re-
lated to the rotation axis). It corresponds to the Madison experiment. Although no
dynamo has been observed yet, numerical simulations have been performed (Bayliss
et al. 2007, Gissinger et al. 2008, 2010). In the case of counter-rotating propellers, an
equatorial dipole is observed when the kinetic Reynolds number is small (Gissinger
et al. 2008). However, for moderate kinetic Reynolds numbers, Re ∼ 300, the flow
involves fluctuations that drives an axial dipole first (see figure 16).

R

z

!

Figure 16: Magnetic field lines obtained with a symmetric forcing (C = 1) for Rm = 300 and
Pm = 1. Note that the field involves a dipolar component with its axis aligned with the axis z of
rotation of the propellers. (Figure from Gissinger et al. 2010).

As for the VKS experiment, this axial dipole displays reversals only when theRπ

symmetry is broken by rotating the propellers at different speeds. In the simulations,
this is achieved by multiplying the forcing by a parameter C, with C = 1 for the lower
hemisphere but can be different from one for the upper one. Time recordings of some
components of the magnetic field are displayed in figure 17 for Rm = 300, Pm = 1 and
C = 2. We observe that the axial dipolar component (in black) randomly reverses
sign. The phases with given polarity are an order of magnitude longer than the
duration of a reversal that corresponds to an ohmic diffusion time. The magnetic field
strongly fluctuates during these phases because of hydrodynamic fluctuations. It also
displays excursions. All of these features are also observed in the VKS experiment.
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However, the simulation for Pm = 1 also displays strong differences with the VKS
experiment. The equatorial dipole is the mode with the largest fluctuations whereas
the axial quadrupolar component is an order of magnitude smaller than the dipolar
modes. In addition, it does not seem to be coupled to the axial dipolar component.
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Figure 17: Time recording of the axial dipolar magnetic mode (in black), the axial quadrupolar
mode (in blue) and the equatorial dipole (in red) for Rm = 300, Pm = 1 and C = 2. (Figure from
Gissinger et al. 2010).
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Figure 18: Time recordings of the axial dipole (black), the axial quadrupole (blue) and the equato-
rial dipole (red). Left: Rm = 165, Pm = 0.5 and C = 1.5. Right: Rm = 180, Pm = 0.5 and C = 2.
(Figures from Gissinger et al. 2010).

We now turn to simulations using only smaller values of Pm (values comparable
to the ones of the VKS experiment are out of reach in direct numerical simulations).
The time evolution of the magnetic modes for Rm = 165, Pm = 0.5 and C = 1.5 is
represented on figure 18 (left). It differs significantly from the previous case (Pm =
1). First of all, the quadrupole is now a significant part of the field, and reverses
together with the axial dipole. The equatorial dipole remains comparatively very
weak and unessential to the dynamics. One can argue that Rm has also been modified
when changing Pm from 1 to 0.5. However, for Pm = 1, we have observed the same
dynamics of reversals when Rm has been decreased down to Rm = 220 below which
reversals are not observed any more.

The high amount of fluctuations observed in these signals is related to hydro-
dynamic fluctuations. One could be tempted to speculate that a higher degree of
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hydrodynamic fluctuations necessarily yields a larger reversal rate. Such is in fact
not the case. A more sensible approach could be to try to relate the rate of reversals
to the amount of fluctuations of the magnetic modes in a phase with given polarity.
Increasing Rm from 165 to 180 does yield larger fluctuations as shown in figure 18
(right). However the reversal rate is in fact lowered because C was modified to
C = 2. This clearly shows that the asymmetry parameter C plays an important role
in addition to the fluctuations of the magnetic field. For Pm = 0.5, reversals occur
only in a restricted region, 1.1 < C < 2.5, which is also a feature of the VKS exper-
iment. The reversal rate strongly depends on the value of C with respect to these
borders, in good agreement with the model presented in Pétrélis & Fauve (2008).
Thus, the transition from a stationary regime to a reversing one is not generated by
an increase of hydrodynamic fluctuations.

We have thus shown that different types of random reversals of a dipolar mag-
netic field can be obtained by varying the magnetic Prandtl number in a rather
small range around Pm = 1. This may be of interest for simulations of the magnetic
field of the Earth that have been mostly restricted to values of Pm larger than one.
We have observed that axisymmetric dipolar and quadrupolar modes decouple from
the other magnetic modes while getting coupled together when Pm is decreased.
Although we do not claim to have reached an asymptotic low Pm regime which is
out of reach of the present computing power, we observe that dominant axial dipole
and quadrupole are also observed in the VKS experiment for which Pm ∼ 10−5.

8 A minimal model for field reversals

These direct numerical simulations illustrate the role of the magnetic Prandtl num-
ber (or possibly of the distance to the dynamo threshold) in the dynamics of re-
versals. We now write the simplest dynamical system that involves the three modes
that look important in the low Pm simulations: the dipole D, the quadrupole Q, and
the zonal velocity mode V that breaks the Rπ symmetry. These modes transform as
D → −D, Q→ Q and V → −V under the Rπ symmetry. Keeping nonlinear terms
up to quadratic order, we get

Ḋ = µD − V Q, (9)

Q̇ = −νQ+ V D, (10)

V̇ = Γ− V +QD. (11)

A non zero value of Γ is related to a forcing that breaks the Rπ symmetry, i.e.
propellers rotating at different speeds.

The dynamical system (9,10,11) with Γ = 0 occurs in different hydrodynamic
problems and has been analyzed in detail (Hughes & Proctor 1990). The relative
signs of the coefficients of the nonlinear terms have been taken such that the solutions
do not diverge when µ > 0 and ν < 0. Their modulus can be taken equal to one by
appropriate scalings of the amplitudes. The velocity mode is linearly damped and its
coefficient can be taken equal to −1 by an appropriate choice of the time scale. Note
that similar equations were obtained with a drastic truncation of the linear modes
of MHD equations (Nozières 1978). However, in that context µ should be negative
and the damping of the velocity mode was discarded, thus strongly modifying the
dynamics.
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Figure 19: Numerical integration of the amplitude equations (9,10,11). Time recording of the
amplitude of the quadrupolar mode for µ = 0.119, ν = 0.1 and Γ = 0.9. (Figure from Gissinger et
al. 2010).

This system displays reversals of the magnetic modes D and Q for a wide range
of parameters. A time recording is shown in figure 6. The mechanism for these
reversals results from the interaction of the modes D and Q coupled by the broken
Rπ symmetry when V 6= 0. It is thus similar to the one described in section 6 but
also involves an important difference: keeping the damped velocity mode into the
system generates chaotic fluctuations. It is thus not necessary to add external noise
to obtain random reversals. This system is fully deterministic as opposed to the one
of Pétrélis and Fauve (2008). The phase space displayed in figure 20 (left) shows
the existence of chaotic attractors in the vicinity of the ±B quasi-stationary states.
When these symmetric attractors are disjoint, the magnetic field fluctuates in the
vicinity of one of the two states ±B and the dynamo is statistically stationary. When
µ is varied, these two attractors can get connected through a crisis mechanism, thus
generating a regime with random reversals.

We do not claim that this minimal low order system fully describes the di-
rect simulations presented here. For instance, in the case of exact counter-rotation
(C = 1, i.e. Γ = 0), equations (9,10,11) do not have a stable stationary state with a
dominant axial dipole. The different solutions obtained when µ is increased cannot
capture all the dynamo regimes of the VKS experiment or of the direct simulations
when Rm is increased away from the threshold. Taking into account cubic nonlinear-
ities provides a better description of the numerical results for Pm = 0.5. However,
this three mode system with only quadratic nonlinearities involves the basic ingre-
dients of the reversals observed in the present numerical simulations for low enough
values of the magnetic Prandtl number. As recalled in section 5, geomagnetic rever-
sals have been modeled since a long time using low dimensional dynamical systems
or equations involving a noisy forcing. The above model (9,10,11) does not rely on
an external noise source to generate random reversals. Compared to previous de-
terministic models, it displays dynamical and statistical properties that are much
closer to the ones of our direct simulations at low Pm or of the VKS experiment.
For instance, the direct recordings of D or Q do not involve the growing oscillations
characteristic of reversals displayed by the Rikitake or Lorenz systems but absent
in dynamo experiments or in direct simulations. Correspondingly, the probability
density function of D displayed in figure 20 (right) is also much closer to the one
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obtained in experiments or direct simulations than the one of previous deterministic
models.
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Figure 20: Numerical integration of the amplitude equations (9,10,11). Top: three-dimensional
phase space. Bottom: probability density function of D (µ = 0.119, ν = 0.1 and Γ = 0.9). (Figures
from Gissinger et al. 2010).

9 Conclusion

We have studied dynamical regimes that can arise when two axisymmetric magnetic
eigenmodes are coupled. Symmetry considerations allow to identify properties of the
magnetic modes and, in some cases, put constraints on the coupling between the
modes. We have shown that when a discrete symmetry is broken by the flow that
generates the magnetic field, the coupling between an odd and an even magnetic
mode (with respect to the symmetry) can generate a bifurcation from a stationary
state to a periodic state. This behaviour is generic when a saddle-node bifurcation
occurs in a system that is invariant under B → −B. Close to the the bifurca-
tion threshold, fluctuations drive the system into a state of random reversals that
connect a solution Bs to its opposite −Bs. This scenario provides a simple explana-
tion for many features of the dynamics of the magnetic field observed in the VKS
experiment: alternation of stationary and time dependent regimes when a control
parameter is varied, continuous transition from random reversals to time periodic
ones, characteristic shapes of the time recordings of reversals versus excursions.

Although the discrete symmetry involved for the flow in the Earth core is dif-
ferent from the one of the VKS experiment, a similar analysis can be performed for
the geodynamo (Pétrélis et al. 2009).

More generally, our scenario can be applied to purely hydrodynamic systems.
Cellular flows driven by thermal convection (Krishnamurti & Howard 1981) or by
volumic forces (Sommeria 1986) display a transition for which a large scale circula-
tion is generated on a smaller scale turbulent background. This large scale flow can
display random reversals, very similar to the ones observed for the magnetic field. A
model analogue to the present one, can explain how this large scale field can reverse
without the need of a very energetic turbulent fluctuation acting coherently in the
whole flow volume.
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[64] F. Pétrélis, & S. Fauve, Saturation of the magnetic field above the dynamo
threshold, Eur. Phys. J. B 22 (2001), 273–276.



Vol. XIV, 2010 Chaotic dynamos generated by fully turbulent flows 87
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