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”...the word relativity-postulate for the requirement of the invariance under the group Gc seems
to me very feeble. Since the postulate comes to mean that only the four-dimensional world in
space and time is given by phenomena, but that the projection in space and in time may still be
undertaken with a certain degree of freedom, I prefer to call it the postulate of the absolute world
(or briefly the world-postulate).”

H. MINKOWSKI

Cologne Conference, September 1908
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Introduction and general survey

From a variety of viewpoints, the theory of relativity appears as one of the major conceptual
events that have ever happened in the adventure of knowledge. It is therefore highly pertinent
that the scientific community celebrates the “century commemoration” of the revelation of special
relativity by two of the four fundamental papers that were published by Einstein in the year 1905.
Since then, the historians of science have been able to accumulate a crop of information about the
complex genesis and the multiple and intricate aspects of that extraordinary intellectual adventure.
However, strangely enough an important pedagogical work still remains to be done, if one retains
from that adventure one of its most striking aspects, namely the existence of a united geometrical
representation of space and time, called spacetime, and the logical necessity of its introduction
on the basis of the special properties of the velocity of light. In fact, we think it worthwhile and
possible to communicate this geometrical representation not only to learned scientists, but also to
any scientifically-curious and/or philosophically-minded student. Let us explain why we think that
it is 1) worthwhile and 2) possible.

1) A wide communication of it is worthwhile, because we have here to deal with a genuine
“jewel of human knowledge”, in which Physics, Mathematics (at a rather elementary level, see 2)
below) and Philosophy are intimately related. Physics at first: one century after its discovery, one
can say that in our present knowledge of the universe, the validity of this joint representation of
space and time extends from the spacetime scales of microphysics to those of cosmology, which
represents a scaling factor of more than 1040. Then Philosophy and Mathematics: we have to deal
with an overwhelming ”ontological fusion” of the categories of space and time, through a mental
representation which belongs to the platonician world of geometrical concepts. Here is what can
be felt as a real shock for the human mind ! With respect to our usual separate perceptions of
space and time, the new geometrical conception of spacetime is as much revolutionary as was the
idea of the sphericity of the earth and the computation of its circumference by Eratosthenes with
respect to the primitive conception of a flat earth. In the latter case, it is only the development of
long-distance travels that have made this idea more and more acceptable for the ”common sense”
throughout the centuries. In the former case, only motions whose velocity is substantial compared
with the velocity of light provide an evidence that the new spacetime framework gives a correct
representation of the physical reality. This is indeed attested as well by the motions of particles
which are the ultimate components of matter as by the motions of astronomical objects observed
by telescopes. It is only the fact (basic in our social existence!) that all of us are ”slowly moving
travellers with respect to one another” which comforts us every day in our feeling that the flow
of physical time is the same for all of us and therefore perceived as absolute (our watches run at
the same rythm!); but this viewpoint, which is encoded in the usual “Galilean kinematics” is only
the low-velocity approximation of the physically relevant representation of spacetime. The basic
character of the physical spacetime is that the lapse of time measured by an experimentalist between
two successive events A and B depends on the particular motion which has been adopted by this
experimentalist for proceeding from A to B. But this fact becomes conceivable to us if we compare
it with the following one which is familiar to our perception: the distance which is measured by an
experimentalist between two given points A and B of space depends on the particular path which
has been adopted by this experimentalist for going from A to B. As a matter of fact, what may
seem here as purely metaphoric turns out to be a deep structural analogy in geometrical terms.

2) A wide communication of it is possible, once one has realized that these purely geometrical
aspects of relativity theory can actually be transmitted in the old Greek spirit of Euclid’s geometry.
In fact, let us recall (if forgotten) that this so-called ”elementary geometry”, revived in a second
golden age by the European geometers (from seventeenth to nineteenth centuries), was given to the
pupils of secondary schools of the old Europe as the most secure guide for training the faculties of
logics and rational thought ! Here we would like to make the point that (at the age of computers. . .)
this framework might also be the most secure one for transmitting to everyone who is interested a
simple, but sound idea of what is the spacetime of relativity theory ! The simplest the argument,
the strongest the impact for the mind !
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From the viewpoint of the historian of science, the adventure of relativistic theory can be seen
as the unexpected, although unavoidable issue of the major crisis of nineteenth-century physics,
in which the concept of a fixed reference medium in the universe, called the ether, was in open
conflict with the recently discovered laws of electromagnetism. Among a lot of experimental as
well as theoretical results, crucial experiments had been proposed and performed as soon as 1887:
these were the famous Michelson and Morley experiments about the constancy of the velocity of
light. Then almost twenty years of maturation were still necessary for the conceptual elaboration
of the theory of special relativity to be performed. Although it was revealed to the scientific
community in the year 1905 by Einstein’s revolutionary paper entitled “On the electrodynamics of
moving bodies” [E1], the theory made a basic use of formulae established previously by Lorentz;
moreover its further formulation greatly benefitted from the group-theoretical analysis of Poincaré
also delivered in 1905 [4], while it found its achievement in 1908 through Minkowski’s illuminating
geometrical work [3]. It is indeed the latter which has to be granted for introducing the appropriate
new concept of absolute spacetime, a concept whose fate was to go far beyond the theory of special
relativity, since it played an essential role in the further discovery and formulation of the theory of
general relativity by Einstein in 1916.

It will be precisely our purpose to focus on the concept of spacetime and at first on its logi-
cal introduction, which may be presented in a spirit that parallels the axiomatization of Euclid’s
geometry, thanks to an appropriate axiom about the “universality” of the velocity of light. This
spacetime, which can be regarded after Minkowski as an absolute framework for describing the kine-
matics of special relativity, is a representation space whose points are interpreted as the “physical
events”. Any motion which is physically possible between two given events A and B is represented
by a certain world-line with end-points A and B. There is an absolute orientation of such world-
line, which can be called its “time-arrow”: its physical meaning is that one of the end-point events,
e.g. B, is in the future of the other one A. The pair of events (A,B) is also said to be causally
separated; it is not the case for all pairs of events. The limits of causality are determined by the
world-lines of light-rays passing by each event: the Minkowski spacetime is thus basically equipped
with a light-webbed structure. In that geometrical representation, one is thus led to distinguish
radically the “absolute properties”, also called “relativistic invariant properties” from the proper-
ties which are ”relative to a reference frame“ and thereby comparable with the effects of spatial
perspective in the usual Euclidean geometry. The basic absolute property of Minkowski spacetime
is the fact that it is a mathematical space equipped with a pseudo-distance, which is closely linked
with the existence of the light-webbed structure of the universe: along the world-lines of light-rays,
this pseudo-distance vanishes ! The most striking feature of this absolute pseudo-distance is the
inverse triangular inequality, which is responsible for the overwhelming phenomenon of ”Langevin
twins”: The “length” of one side (e.g. the aging of the twin at rest) is longer than the sums of the
“lengths” of the other two sides of the triangle (namely the aging of the travelling twin). As a mat-
ter of fact, eventhough the full spacetime is (in mathematical terms) an abstract four-dimensional
manifold, such an overwhelming property as the aging difference for twins with different motions
can be visualized in terms of planar geometry. It is in fact sufficient to consider two-dimensional
sections of spacetime in which a single dimension of space is involved for having a fully correct and
intuitive geometrical picture of the Minkowskian triangular inequality. Similarly, one can easily
visualize in such a planar section of spacetime the phenomenon of relativistic perspective called
”the contraction of lengths”. Of course, the last important step for our understanding of spacetime
concerns the way in which the usual three-dimensional Euclidean geometry is embedded in the
Minkowskian four-dimensional spacetime. The fact that different embeddings hold for observers
in relative uniform motion is implied by the notion of Lorentz frame; there appears the relevance
of the group of Poincaré transformations. All these aspects of elementary Minkowskian geometry
following from an axiomatic Euclid-type construction will be covered in our part 2; a short pre-
liminary part is devoted to the use of geometry in mathematical physics, as an introduction to the
concept of spacetime.

At that point, one might have the feeling that nothing more has to be added for understanding
the kinematics of special relativity, but this is not so. In fact, the conceptual revolution that it
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represents is so rich that after the basic articles of 1905 and 1908 in which it was delivered,
several aspects of it deserved to be deepened and clarified: this was performed around 1960 in two
directions.

a) If the parallel between the Euclidean geometry of our usual three-dimensional space and
the Minkowskian geometry of four-dimensional spacetime is actually complete in the physical
world, this parallel has to be checked not only for the geometry of straight world-lines, namely for
uniform motions, but for arbitrary (smooth) curved world-lines, namely for accelerated motions.
The interpretation of Minkowskian pseudo-length as a proper time measured by a clock along
the world-line of the motion and the geometrical property asserting that such a pseudo-length
is always smaller than that of the corresponding uniform motion originating and terminating at
the same events had to be tested experimentally. This basic property of Minkowskian geometry,
which can be nicely summarized by saying that ”In proper-time distances, the straight-line is the
longest distance between two points (namely two events)”, was already present in Einstein’s article
[1] under the physical terminology of ”clock slowing-down phenomenon”. However, it remained
to be checked experimentally that clocks submitted to accelerated motions were as unsensitive
to the accelerations as graduated ribbons were unsensitive to curvature for measuring Euclidean
curvilinear distances. What was in question in such investigations had to do with the physical
nature of the clocks, considered as trustful measuring instruments, whose robustness with regard
to the accelerations had to be quantitatively estimated. Thanks to the progress of physics during
the twentieth century, the set of traditional clocks (called “dynamical”) was enriched by a new class
of clocks, based on microphysics phenomenons and called “atomic clocks”, whose precision degree
and robustness were far higher. Around 1960 (see in particular Sherwin’s paper[S]), this property
of unsensitivity to accelerations has been established (and confirmed since then with higher and
higher precision) for various types of atomic clocks. These results then exclude radically the last
objections of the opponents to the ”twin paradox” (see [S]). In particular, they allow one to present
a completely acceptable version of the twin phenomenon in uniformly accelerated motions, namely a
version which is biologically bearable by human experimentalists, even though for technical reasons
it remains presently a “Gedanken experiment”. Moreover, these manifestations of the Minkowskian
geometrical structure in accelerated motions gives an opportunity to state clearly that they must
not be confused with possible effects of general relativity. In fact, the latter occur substantially
when the accelerations are caused by the presence of large masses of matter, which produces an
additional curvature effect on the Minkowskian geometry of spacetime.

b) Since 1959 with the articles of Terrell [6] and of V. Weisskopf [7], problems of relativistic
perspective have been reconsidered. Progresses have been made on the problem of what should be
the real optical appearance of a fast-moving extended object with respect to an observer linked
to a given Lorentz frame. The understanding of the phenomenon of “contraction of lengths” was
thus revisited and corrected for the case of extended objects. Much more recently, impressive
visualizations of moving objects with relativistic velocities have been given thanks to the help of
computer technique (see [8] and references therein).

An account of the previous developments a) and b) will be given below respectively in parts
3 and 4. Part 5 and the companion paper by Ugo Moschella will illustrate the fundamental role
played by the conceptual framework of Minkowski spacetime in two domains of physics whose
order of magnitudes of spacetime distances differ by 1040; we mean respectively particle physics
and cosmology. A short final part 6 will serve as a bridge between the two papers.

It is at the scale of particle physics phenomenons that the validity of special relativity and of its
expression in the Minkowski spacetime framework appears with its full strength. In fact, the second
revolutionary discovery which can be found in the second Einstein’s paper [2] on special relativity
in 1905, namely the equivalence relation of mass and energy E = mc2, provides the relevant
kinematical framework for understanding the energy-balance of all the nuclear and electromagnetic
reactions. In geometrical terms, this framework corresponds to supplement Minkowski’s spacetime
by the introduction of another identical Minkowskian space, interpreted as the space of energy-
momentum vectors of material points. This framework gives a remarkably good description of the
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kinematics of high-energy particle physics. In the Minkowskian energy-momentum space, Einstein’s
relation E = mc2 is visualized under the form of the mass hyperboloid, called the mass shell of the
particles: it is the surface which represents the set of all possible states of a free relativistic particle
with mass m. This description includes the case of photons: for these “massless particles“, the mass
shell coincides with the “light-cone”. In the energy-momentum space, the law of conservation of
total energy-momentum admits a simple geometrical formulation. In that space, the Minkowskian
triangular inequality accounts for the production of any number of particles in high-energy collisions
of two particles (including the massless case of photons). All that constitutes the basic background
for the formulation of high-energy particle scattering in the general framework of quantum field
theory. In particular, the world-line representation of free particles and of their multiple collisions
in Minkowski’s spacetime obeying the rules of relativistic kinematics plays a basic role in the
corresponding quantum field-theorerical treatment of particle physics: it explains the so-called
Landau singularities of the multiparticle scattering functions.

At cosmological scales, the concept of spacetime introduced by Minkowski is still valid, pro-
vided one includes as a new revolutionary ingredient the notion of curvature: here is the geometrical
content of general relativity. There are two reasons for this curvature phenomenon: while the first
one is the local density of matter (or ”gravific mass”) which is present near each event in the
universe, the other one is linked with the expansion of the universe; it is encoded in the so-called
cosmological constant in the equations of tentative geometrical models of the universe, whose
simplest one (with zero mass density) is the de Sitter universe (1917) presented in the companion
paper. Under this respect, the role of Minkowskian geometry for the local description of the universe
throughout its evolution parallels the role of planar Euclidean geometry for the local description of
the surface of the earth. In mathematical terms, the latter is a two-dimensional Euclidean manifold:
the straight-line distance of planar geometry is replaced by the geodesical distance between two
points of the surface of the earth, which is the shortest one with respect to all possible paths join-
ing these two points on the surface. Similarly, the universe (considered throughout its evolution)
appears as a four-dimensional Minkowskian (one also says “Lorentzian”) manifold: between two
causally-separated events, there is a geodesical time-like distance, which is the longest one with
respect to all possible world-lines joining these two events. For instance, when one estimates the
age of the universe to be of the order of 14.5 billions of years, one has in mind the value of such
a geodesical time-like distance between an event that can be called “the big bang” (in the most
currently accepted cosmological models) and the event called “here and now” by the inhabitants
of the earth in the year 2005. However, it is philosophically questioning to remain conscious of the
following: according to the structure of Minkowskian manifold of the universe, any other world-line
that relates those two events is covered in a shorter time-like distance. According to the motion
which is associated with that world-line, it can be . . . one century, one year, one day, one second
. . . or even zero, if one considers a light-ray trajectory, namely a world-line which is composed of
pieces of light-like geodesics . . ..

1 On the use of geometry in mathematical physics and the concept of spacetime

1.1 Geometry of description and geometry of representation

As we all know it, Euclidean geometry (in two or three dimensions) corresponds to an idealized
description of the space which surrounds us, as it is felt by our visual and tactile perceptions.
The etymology of the word ”geometer” (and for instance in France its standard meaning as a
profession. . .) is still reminding us of the fact that, since very ancient times, this branch of mathe-
matics was progressively elaborated from the consideration of practical physical problems, such as
the measurement and sharing of ground pieces; the description of the trajectories of celestial bodies
also provided another powerful motivation for the development of geometry. It is not a triviality,
but a subject of wondering and of philosophical questioning that the idealized notions of ”elemen-
tary geometry” (points, lines etc...) equipped with logical relations called axioms or postulates,
allow us to construct ”rigorous proofs” of nontrivial properties of the geometrical pictures. While
their experimental checking in physical space is fully satisfactory, these properties also appear to
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us with the strength of evidence as elements of an ”absolute reality of the mind”, namely of a very
special ”world of Platonician ideas”: the world of geometrical concepts. One can then say that, as
a geometry of description, Euclidean geometry appears as the oldest manifestation of the spirit of
mathematical physics.

Another considerable achievement in the history of mathematics is the fundamental corre-
spondence between numbers and geometrical concepts which started from the length measurement
procedure and resulted in the elaboration of Cartesian coordinates and of the so-called ”analytic
geometry”. As it may be already familiar to pupils at the terminal level of high-school, this im-
plies a relationship between algebra and geometry whose interest is two-fold. On the one-hand,
the properties of geometrical curves can be equivalently represented by algebraic equations relat-
ing the coordinates of their points. This representation is unique, once the choice of a system of
coordinates has been specified. For example in orthogonal coordinates, the equation of the unit
circle x2 + y2 − 1 = 0 makes use of the standard Pythagore theorem for characterizing the points
M = (x, y) of that curve. On the other hand, any numerical relation between two quantities x and
y (always representable by an equation of the form f(x, y) = 0) admits a pictorial representation
by a curve in a plane equipped with given coordinate axes; this pictorial representation is specially
interesting when x and y denote physical quantities related by a physical law. In fact, the curve
which one thus constructs represents all the “states” of the observed phenomenon, each state being
characterized by a pair of values of the quantities x and y which are simultaneously observed and
thus associated with a particular point M = (x, y) of the curve. The geometrical constructions
which may be associated with the pictorial representation of a physical phenomenon in a plane or
in a three-dimensional space equipped with coordinates pertain to what we shall call a geometry
of representation. By using such a terminology, we adopt typically a viewpoint of mathematical
physicist: while geometry presents all its mathematical characteristics, in particular the fact that
its logical arguments are immediately perceived by a special type of global visual intuition, all its
elements are here given a physical interpretation in terms of a certain category of phenomenons;
in other words, these phenomenons are actually represented in terms of geometrical concepts.

1.2 The use of geometry in more than three dimensions

From a purely mathematical viewpoint, the correspondence between numbers and geometrical
concepts can be extended to n−dimensional abstract spaces Rn, with n larger than three. The
concept of “point in Rn” is now introduced as a n−tuplet of coordinates M = (x1, . . . , xn). The
concept of “surface of dimension p” with 2 ≤ p ≤ n−1 (called “curve” for p = 1 and “hypersurface”
for p = n − 1) is then introduced as a subset of points of Rn whose coordinates satisfy n − p

independent equations; correspondingly, these coordinates can also be expressed by parametric
equations involving p independent parameters. If one wishes, one can equip the space Rn with a
Eulidean distance, which is obtained by an obvious extrapolation from the usual one, two and three-
dimensional cases: by definition, the squared length of a linear segment MN = (a1, a2, . . . , an) is
[MN ]2 = a2

1 + a2
2 + · · · + a2

n, which implies the usual triangular inequality [ON ] ≤ [OM ] + [MN ].
The equation x2

1 + x2
2 + · · · + x2

n = 1 is represented geometrically by the “unit hypersphere”. In
any two-dimensional or three-dimensional section of Rn defined by linear equations in terms of the
coordinates, one recovers respectively a plane or a three-dimensional space equipped with the usual
Euclidean distance. So one can develop a set of geometrical concepts, relations and constructions
which generalize those of the usual geometry; this can be done at will either in terms of equations
or in a purely geometrical language.

From the viewpoint of mathematical physics, the use of geometry in more than three di-
mensions turns out to be necessary, if one wishes to represent phenomenons whose description
necessitates more than three independent quantities. A typical example is the six dimensional
space R6

x1,x2
= R3

x1
×,R3

x2
of the positions (x1,x2) of pairs of material points (or pointlike parti-

cles) in mutual interaction. Trajectories of such pairs are represented by curves in R6, described
in terms of a time parameter t by equations of the form x1 = x1(t), x2 = x2(t). Another type
of geometrical representation which is also often used in physics with strong motivations is com-
plex geometry: for example the extension of functions of the real frequency variable to (analytic)
functions of the corresponding complex variable in a domain of the complex plane C is of current
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use. It is in fact a basic property of structural functions describing linear response phenomenons,
which provides a convenient visual representation of resonance phenomenons by real or complex
poles. In particle physics a similar use of complex geometry in spaces C× · · · ×C = Cn of various
variables (positions, time, momenta, energies) plays an important conceptual role.

In the following, we shall be concerned with a very special type of geometry of representation,
called spacetime, whose purpose is to provide a visualization of the motion phenomenons through-
out their whole history. If we consider motions in the Euclidean space R3, providing as usual a
geometry of description of the world which surrounds us, we need an additional time-coordinate
and therefore an affine space R4 for representing geometrically all the events of the world. Such
a map is intended to picture in an idealistic way the whole history of the world: the motion of
any material point (or of any observer) will be represented as a curve, called a world-line, which
describes all its history from the remote past to the far future. The usual notion of trajectory will
then appear as the projection of the world-line onto the Euclidean space R3. The world-line is a
geometrical concept which contains all the information on the motion, which is not the case for
the trajectory: two different worldlines (i.e. motions) may project onto the same trajectory.

1.3 Galilean spacetime as a geometry of representation of motion phenomenons

In its simplest form, which we shall call Galilean spacetime, the concept of spacetime appears as a
geometry of representation for the phenomenons of motion, as they are perceived by a privileged
observer called O0, submitted to the following prejudice: the time interval that elapses between two
events A and B is an absolute quantity; its value is the same for observers moving in an arbitrary
way between A and B, provided they are equipped with identical clocks.

Keeping the previous notations, x = x now denotes a point, or equivalently three coordinates
called space coordinates, in the usual Euclidean space R3 in which we are living, while y ≡ t

denotes a time coordinate. A point X = (x, t) in R4 represents the event which takes place at
time t at the point x of Euclidean space R3. In particular, the origin O represents the event called
“here and now” (at a certain instant. . .) by the observer O0, who stands “at rest” at x = 0; by
definition, this means that the observer’s worldline is the time-axis with equation x = 0. For O0,
the coordinate hyperplane with equation t = 0 represents the set of all simultaneous events which
constitute the “present”. Similarly, for every fixed value t0 of t, the hyperplane with equation t = t0
is a complete set of simultaneous events, which we call set of simultaneity and which belongs to
the future or to the past according to whether t is positive or negative. The whole future and the
whole past are represented respectively by the open half-spaces t > 0 and t < 0 of R4. In such a
representation of the events, one says that the time-axis associated with the Euclidean space R3

of ”present events” constitute the reference frame of the observer O0 (the choice of the ”present
time” t = 0 is of course a matter of convention for O0).

Let Ov0 be an observer in uniform motion with vector velocity v0 with respect to O0 and
passing by O, which means that he shares with O0 the same and unique event that we called ”here
and now”. The time-axis ∆v0 for this observer is defined by the corresponding worldline, namely
the straightline with (vector) equation x = v0t (see fig. 1).

For any such observer, the sets of simultaneity t = t0 are the same as for the observer O0.
More precisely, every event M = (x, t) of spacetime is perceived by the observer Ov0 as having
coordinates (x′, t′) such that x′ = x − v0t and t′ = t. This change of coordinates from O0 to Ov0

is also called a Galilean transformation; it implies the basic property of additivity of velocities: a
uniform motion with worldline x = vt is seen by Ov0 as a uniform motion with equation x′ = v′t,
with velocity vector v′ = v−v0. For example, in a train whose velocity is v0 =100 kmh, a passenger
walking longitudinally with velocity v′ =5 kmh has a velocity with respect to the earth which is
v =105 kmh or 95 kmh according to whether the forward or backward direction of the train has
been chosen by that passenger. . .

We note that the Galilean changes of coordinates do not preserve the notion of orthogonality
in R4. If for convenience we choose to represent the simultaneity sets as “horizontal spaces” (the
dimension of space being unfortunately reduced to two in our visual perception. . .) and the time-
axis of the observer at rest O0 by a vertical line, the reference frame for Ov0 will associate the
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Figure 1: The Galilean spacetime

oblique time-axis ∆v0 with the horizontal space. But the observer at rest enjoys no special physical
properties with respect to any other observer in uniform motion (that’s the “Galilean principle of
relativity” which follows from the law of inertia). So the verticality of the time-axis could have
been chosen for representing the worldline of any given uniform motion: there is nothing deep in
that choice. One can also say that the Galilean spacetime is defined for O0 up to the arbitrariness
in the choice of the time-axis or in mathematical terms up to a Galilean transformation: it is the
equivalence class of all these representations. But the same representation of spacetime is then also
acceptable by any observer Ov0 in uniform motion, which expresses precisely in geometrical terms
the content of the Galilean relativity principle.

Here it is also worthwhile to point out that, in contrast with the ”horizontal” Euclidean
subspaces R3, the Galilean spacetime R4 is only an affine space; it is not equipped with any
physically sensible global notion of orthogonality and distance. But this is consistent with our
standard perception: why would space and time strangely mix each other in some supergeometry?
Galilean spacetime is just a geometry of representation in a very poor sense: it has no global
geometrical structure. But let us now incorporate the strange properties of light velocity and then
discover that such a phantasmic supergeometry holds in the realistic spacetime of physics, namely
in the four-dimensional world called Minkowski’s spacetime !!

2 Postulates and construction of Minkowski’s spacetime

Preliminary Remark The postulates and the construction which we propose do not pretend to be
the most economical ones from the viewpoint of formal logics. In particular, we must draw the
attention of the reader to the important mathematical article by E.C. Zeeman entitled “Causality
Implies the Lorentz Group” [9]. We shall briefly indicate at the end of Sec.2-1 how the latter can be
interpreted in our approach, which is much more pedestrian since making use of the basic physical
concept of uniform motion and of the familiar representations of Euclid’s geometry.

We shall introduce five postulates for our construction of the spacetime of special relativity.
The first two postulates introduce a representation of spacetime conceived by the observers at rest,
while the third and fourth postulates express minimal properties to be shared by all the observers
in uniform motion. The contents of the first and third postulates are easily accepted as being
already satisfied in the Galilean spacetime, but the second and fourth postulates introduce the
world-lines of light as playing a fundamental role in spacetime. In fact, these postulates express
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in a geometrical way the revolutionary result obtained at first by the experiments of Michelson
and Morley: For all observers, either at rest or in uniform motion, the velocity of light in the
vacuum is a universal constant c; neither it depends from the motion and from the nature of the
light-emitter, nor from the direction of emission and the various changes of direction of the light
rays considered (e.g. obtained by the interposition of mirrors), nor from the wave-length of the
light. Renewed experiments which make use of a variety of experimental devices and whose range
extends to electromagnetic waves outside the spectrum of visible light (including in particular the
propagation of radiowaves) have been repeatedly performed throughout the twentieth century. They
all have confirmed the universality property of c, even if its precise value (c = 299, 776 · · ·km/sec as
measured in 1940 by Anderson) is now thought to be possibly fluctuating with time at astronomical
scales and also depending on the type of clocks (atomic or dynamical) for time measurements. The
overwhelming fact about the universality property of c is that light does not satisfy the usual
(Galilean) property of additivity of velocities: by switching on a lamp on a train, it is impossible
to make its light travel at the velocity c plus the velocity of the train !!

Finally, it is pertinent and (as we shall see) useful for our construction to add a fifth postulate:
the latter requires that, in the limit of very low velocities (those which we perceive in our life),
Galilean spacetime has to be an excellent approximation of the new spacetime. Here lies the wisdom
of all revolutions in the domain of science: the old theory is not thrown away as completely perverse,
it is honestly recognized as a good first-order approximation of the new theory when the order of
magnitude of certain variables lies within certain limits.

NOTATION: In all the following, the symbol A
.
= B will be used when this equality serves as a

definition either of A in terms of B or of B in terms of A. Examples: a vector x
.
= (x1, x2, x3);

x2
1 + x2

2 + x2
3
.
= x2, the squared norm of x; the norm |x|

.
= (x2)

1

2 .

2.1 The postulates and the light-cone structure of spacetime

First postulate: the spacetime representation

All the observers at rest in the Euclidean space R3
x

(where x = (x1, x2, x3)) agree on the
existence of a geometrical representation of all “events” of the universe by points in a space R4

x,t =
R3

x
× Rt, with the same notions of simultaneity sets t = t0 as in the Galilean spacetime. The

time-axis is the worldline of the observer O0; the time-axis together with the “present hyperplane”
t = 0 constitute the reference frame of observers at rest, its origin O being the ”present event”
(”here and now”) of the observer O0.

This postulate calls for three remarks:

i) The events, and thereby their representation by points in R4 are conceived as “absolute
elements of reality”; however, the given choice of coordinates (x, t) priviledges the class of observers
at rest, whose worldlines are all the parallels to the time-axis. The basic problem of our construction
will be to determine the corresponding choices of coordinates for any observer in uniform motion.
As in the Galilean spacetime, the worldline of any observer in uniform motion is a straight-line.
For example ∆v is the worldline of the observer Ov whose motion is defined as in the Galilean
case.

ii) All the observers at rest are supposed to be equipped with identical devices for measur-
ing lengths (i.e. graduated rods) and for measuring time-intervals (i.e. clocks). The fact that all
observers at rest agree on their Euclidean representation of space is trivial for us (after more than
2000 years of cartographical techniques...). The fact that they agree on the simultaneity of two
events requires a procedure of ”synchronization of clocks” through the emission of light-signals,
which we shall be led to specify later. For the moment, we just postulate that this notion of simul-
taneity for all the observers at rest, which is basic for our geometrical representation of spacetime,
is physically meaningful.

iii) In all our pictorial representations, the time-axis will be represented as vertical and
upward-oriented; the ascending arrow indicates the future. The Euclidean space R3

x with equa-
tion t = 0 is then considered as horizontal. In many arguments, it will be sufficient to consider a
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single space variable x = x1, namely the planar section (Ox1, Ot) of spacetime, with the axis Ox
horizontal and rightward-oriented as usual.

Second postulate: the light-cone

All the world-lines of light rays emitted from the event O by any (moving or at rest) light-
emitter are represented in R4

x,t by the linear generatrices of the cone C+ with equation |x| =
ct, t > o, which is called the ”future light-cone of O”. Similarly, all the light rays emitted in the
past of O by any (moving or at rest) light-emitter and which are detected at O have worldlines
which are carried by the generatrices of the cone C− with equation |x| = −ct, t < o, which is called
the ”past light-cone of O”. The whole set of light world-lines passing at O is the set of generatrices
of the ”light-cone C of O” (see fig.2), with

Figure 2: The light-cone

quadratic equation

c2t2 − (x2
1 + x2

2 + x2
3) = 0.

Similarly, with each event X = (x, t) of R4
x,t, one can associate the ”light-cone C(X) of X , which

is obtained from C by the action of the translation with vector ~[OX ] in R4
x,t.

It is worthwhile to emphasize that the absolute localization on the cone C of the world-lines of
light rays passing at O did not hold in the usual Galilean spacetime representation, since light was
treated there as any other motion and therefore obeyed the principle of additivity of velocities.
To be more illustrative, let us consider light-propagation along a single direction of space Ox

represented as our horizontal axis, but with the two possible orientations of light rays emitted
from O, namely the rightward light ray (towards positive x′s) and the leftward light ray (towards
negative x′s). The world-lines of these two light rays in the planar section (Ox,Ot) of spacetime
are respectively the half-lines CR and CL with equations x = ct, t > 0 and x = −ct, t > 0 (see
fig.3): they are the traces of the future light-cone C+ in the planar section (Ox,Ot). If the light
rays emitted from O are emitted from a train with velocity v in the direction Ox, its propagation
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is still observed by an observer at rest as having the velocity c and not c + v or c − v, which
would have been the case according to the Galilean viewpoint. In the planar section (Ox,Ot) of
Galilean spacetime, the worldlines of the light rays emitted from O would have had equations of
the form x = (±c + v)t (resp. x = (±c − v)t), depending on the velocity v (resp. −v) along Ox
of the light-emitter at O. Therefore, the Galilean world-lines of these light rays would cover the
whole half-plane of positive t′s, namely ”the absolute Galilean future”. It is therefore crucial to
understand that in the new ”relativistic spacetime” that we construct, the half-lines CR and CL
and more generaly the cone C+ are new absolute data.

Remark on the choice of units: Instead of using the very large value of c expressed in km/sec
which would make unpracticable the geometrical representation of spacetime, we can choose time
and space units in such a way that c = 1. For example, we can adopt the choice of year and
light-year which is standard in astronomy. The light-cone C is then well-represented as the cone
with equation t2 − x2 .

= t2 − (x2
1 + x2

2 + x2
3) = 0 and the light world-lines CR and CL are then

well-pictured along the diagonals of the axes (Ox,Ot) (fig.3). Another possible convention whose
advantage is also to keep the same geometrical representation but without fixing the value of c
consists in considering that one plots the variable ct instead of t. Here it is relevant to notice that
the variable ct has the ”physical dimension” of a distance, which prepares us to understand why
it can be treated on the same footing as the space coordinates x in the following.

Third postulate: isochronousness in all uniform motions

For every observer O in uniform motion, let tO be its time-variable , measured by a clock
which is identical with that of O0. Its world-line is a straight line denoted by ∆ which carries the
time-axis of O. Let then X1, X2, X3 be three events in ∆. We postulate that it is equivalent that
their time-coordinates t1, t2, t3 satisfy the equality t2 − t1 = t3 − t2, namely that X2 be the middle
of the segment [X1X3], or that the corresponding times (tO)1, (tO)2, (tO)3 measured by O satisfy
the equality (tO)2 − (tO)1 = (tO)3 − (tO)2.

This postulate is of course trivially satisfied in the absolute time viewpoint of Galilean spacetime.
Here one only requires that the flow of time measured via a regular sequence of events by an
observer O is also perceived as regular up to a change in the scale, when the same successive
events linked to O are detected (with an identical clock) by an observer in uniform motion with
respect to O.

Fourth postulate: “Physical” uniform motions and the universality of c

a) The only uniform motions considered as having a physical meaning are those whose velocity
v is smaller than c. For such motions whose world-line ∆v contains the event O, ∆v \ O is made
up of two half-lines ∆+

v and ∆−
v which are respectively contained in the convex conical volumes

V + and V −:

V + is the set of all events (x, t) such that |x| < ct, t > 0, called ”the absolute future of O”;

V − is the set of all events (x, t) such that |x| < −ct, t < 0, called ”the absolute past of O”.
Similarly, for each event X one can introduce the convex conical volumes V +(X) and V −(X),

namely respectively the absolute future and past of X , whose union contains all the worldlines ∆
of the uniform motions passing at X . The future light-cone C+(X) (resp. past light-cone C−(X))
thus appears as the boundary of the corresponding future cone V +(X) (resp. past cone V −(X)).

b) For every observer Ov with worldline ∆v graduated by the time-variable tv, there exist
coordinates xv of the space perceived at rest by Ov, such that any eventX = (x, t) of the light-cone
C is detected by Ov as having coordinates (xv, tv) satisfying the relation |xv| = c|tv|.

Part a) of the postulate, which requires that the light-velocity is an absolute limit to the propagation
velocity of any physical system to which an observer can be linked, will appear as deeper than a
pure physical requirement. It will in fact be seen below that the lines of spacetime which could be
interpreted as worldlines of motions with velocity larger than c (or ”superluminal motions”) are
necessarily given another interpretation, which is of purely spatial nature. So the requirement a)
is deeply involved in the self-consistency of the relativistic spacetime representation.
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Part b) again pertains to the basic statement about the constancy of the velocity of light. It can
also be seen as contained in the principle of relativity which claims that all the physical laws, and
therefore in particular the velocity of light, are the same for all observers in uniform motion: no
rest frame is physically priviledged as it was presupposed in the old concept of ether.

Fifth postulate: validity of the Galilean approximation

For every observer O in uniform motion or at rest, there is a Galilean representation of
spacetime which is an excellent approximation of the exact spacetime for the description of motions
whose relative velocity with respect to O is very small with respect to c.

The precise mathematical formulation of this postulate will appear clearly in the following.

Remark In the present approach, the interpretation of the basic result of [9] seems to be the
following. Let us assume that the light-cone structure of the spacetime R4 holds for the observer
at rest O0 as in our first and second postulates. Let us now consider observers in unspecified
motion, for which the spacetime R4 is also perceived with a lightcone structure (implying the
same universal velocity of light c). Let us assume that for such observers the causality order of
events X , Y (denoted X < Y ) is defined by the fact that Y belongs to the future cone V +(X) of
X , and that this order coincides with the one perceived by the observer at rest. Then it is proven
that such observers are necessarily in uniform motion and that their scales of time and length
are linear functions of those of the observer at rest so that the whole structure of Minkowski’s
spacetime follows. In particular, our postulate three concerning the “isochronousness property” of
uniform motions would then be redundant. However, as it has been pointed out in [9], the result
does not hold in two-dimensional spacetime; a nontrivial use of the dimension larger than two
has been made in that work. Our approach is rather opposite: in view of its pedagogical nature,
it aims to exhibit already in two-dimensional spacetime (which is much simpler to describe) how
the construction of Minkowski’s spacetime can be worked out. In fact, this will be made in detail
from Sec.2-2 to Sec.2-6. It is only in Sec.2-7 that we shall be ready to tackle the four-dimensional
spacetime equipped with the group of general Lorentz transformations. This subsection, which is
more mathematical, may be skipped by the reader more interested in the physical or philosophical
aspects of special relativity.
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Figure 3: Simultaneous events
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2.2 Simultaneousness revisited

The notion of absolute simultaneousness, namely the identity of every simultaneity space t = t0
for all the observers (at rest or in motion) is encoded in the Galilean spacetime representation.
However this viewpoint is purely idealistic, because for each observer the property of simultaneity
of two events is a physical property which has to be checked via some procedure implying the use
of lengths and time measurements. Now in view of the universality of the velocity of light, the use
of light-signals will be particularly helpful for clarifying the notion of simultaneousness relatively
to each observer at rest or in uniform motion.

We shall describe a physical procedure for characterizing simultaneous events whose geomet-
rical representation in spacetime is quite simple. It only requires observers and light-signals moving
in a single space dimension Ox, which allows one to represent phenomenons in the two-dimensional
section (Ox,Ot) of spacetime. We are led to use the geometrical representation of light worldlines
as being all parallel either to CR or to CL (according to our first and second postulates). For
simplicity, chosen units are years and lightyears so that c = 1.

For the observer at rest O0, the procedure must of course confirm that (for instance) the events
A0

.
= (x = 1, t = 1) and B0

.
= (x = −1, t = 1) are simultaneous. To that purpose, one considers

rightward and leftward lightrays emitted from O and reflected (by mirrors) at the respective points
x = 1 and x = −1. The worldlines of these reflected lightrays are respectively parallel to CL and
CR and therefore converge at the event X0

.
= (x = 0, t = 2) of the worldline of O0, which allows

the latter to conclude that the ”mirror events” A0 and B0 are simultaneous: since the velocity of
light is the same in right and left directions, the mirror events have been simultaneously produced
at half of the time of X0 (namely t = 1). As seen on fig.3, the geometrical representation of the
previous light-signal procedure exhibits that the quadrilateral (OA0X0B0) is a parallelogram. We
also notice that this procedure is useful for allowing all the observers at rest to synchronize their
clocks with respect to O0’s clock and therefore to agree on the same representation of spacetime.
For instance the observer situated at x = 1 (i.e. whose worldline has the equation x = 1) will be
warned by O0 that he should assign the time t = 1 to the event A0, at which he receives the light
signal coming from O.

Now we can repeat the same construction for any given observer Ov in uniform motion,
with |v| < 1. We use again two rightward and leftward lightrays emitted from O and therefore
represented along CR and CL, but we now set the mirrors (at some points xA > 0 and xB < 0)
in such a way that the worldlines of the two reflected lightrays intersect at an event X which
belongs to the worldline ∆v of Ov . Here again the two mirror events A and B are such that the
quadrilateral (OAXB) formed by the four light worldlines is a parallelogram, and it then follows
that, except when v = 0, the linear segment AB is not parallel to the axis Ox (fig.3).

Now in view of b) of the fourth postulate, the forward and backward travels of light corre-
sponding to the worldline segments OA and AX (resp. OB and BX) are performed during the
same time for Ov , since performed at the same universal velocity. Therefore if tv(X) denotes the
time of the event X measured by Ov, the times of the mirror events A and B measured by Ov

will be both equal to tv(X)
2 : these two events are therefore to be considered as simultaneous by

Ov . Moreover (in view of the same postulate), the events A and B will be produced at spatial

coordinates xv = ± tv(X)
2 .

We shall now use our third postulate for proving that all the points of the straight line (AB)
represent the events which appear to be simultaneous to A and B for the observer Ov.

We consider at first the event G at the intersection of OX and AB. Since (in the parallelogram

(OAXB)) one has OG = GX , the observer O0 perceives the event G at the time t(G) = t(X)
2 .

Then in view of the third postulate, the event G is also perceived by the observer Ov at the time

tv(G) = tv(X)
2 , which shows that G is simultaneous to A and B for Ov .

Let now P be any point on the half-line with origin G and containing A, and let E and F

be the intersections of the straight line (OX) respectively with the parallels to CR and CL by P .
Thales property then yields (fig.4):
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GF

GX
=
GP

GA
=
EG

OG
, and therefore EG = GF.

By introducing the point Q, symmetric of P with respect to G one then gets a parallelogram
(EPFQ). Therefore the same argument as above applies to the lightrays emitted at E, reflected
at P and Q and converging at F : it shows that P ,Q and G are simultaneous with respect to Ov.
Since the symmetric pair (P,Q) may vary arbitrarily on the straight line (AB), this line is a line
of simultaneity for Ov (corresponding to the time tv

2 ).

Since the choice of tv was arbitrary in the previous argument, one concludes that the lines of
simultaneity for the observer Ov in the plane (Ox,Ot) are all the parallels to (AB); in particular
the straight line ∆′

v parallel to (AB) and containing O represents the “present events” (tv = 0)
for Ov . As seen on fig.4, half of the line ∆′

v (on the right of O for the choice v > 0) contains
events at t > 0, which are therefore perceived as belonging to the future by O0 together with all
the observers at rest, while the other half (on the left of O) contains events at t < 0, perceived as
belonging to the past by the same observers.

The direction ∆′
v, obtained from ∆v by the previously described parallelogram construction,

is said to be conjugate of ∆v with respect to the (light world)lines CR and CL. Points X = (x, t)
and X ′ = (x′, t′) of ∆v and ∆′

v satisfy the equations

x = vt, x′ =
1

v
t′, and therefore tt′ − xx′ = 0.

This calls for two remarks:

i) conjugacy or pseudo-orthogonality relation:
The relation tt′ − xx′ = 0 (or in unit-independent form (ct)(ct′) − xx′ = 0) can be called a

pseudo-orthogonality relation between the vectors [OX ] and [OX ′], by analogy with the orthogo-
nality relation xx′ +yy′ = 0 in a Euclidean plane. Such a relation, which expresses the geometrical
property of conjugacy of the pair (∆v ,∆

′
v) with respect to the pair (CR, CL), introduces a joint

geometrical structure of space and time, which will appear still stronger in the analysis of Sec. 2-3.
For the moment, we can simply notice the following properties of conjugate pairs (∆v ,∆

′
v):

a) when v varies, ∆v and ∆′
v are turning in opposite ways (one clockwise and one anticlock-

wise) in the plane (Ox,Ot).
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b) when v tends to 1 (resp. −1), both lines tend together to CR (resp. CL).

c) there is a single conjugate pair which is orthogonal, namely the supports of the axes of
coordinates Ox,Ot.

Here, however, one must stress that the choice of orthogonal space and time axes Ox,Ot for
the observers at rest is a pure convention, as it was already the case for the Galilean spacetime
representation. A more general, but equivalent choice which does not ascribe a special role to
observers at rest would be the following. One first gives oneself the pair of light worldlines (CR, CL)
and one chooses for (Ox,Ot) any pair of straight lines which are conjugate with respect to (CR, CL)
(defined intrinsically through the parallelogram construction). The analysis above would have given
the same result, namely that the time and space axes for any observer Ov are carried by conjugate
pairs (∆v ,∆

′
v) with respect to (CR, CL). Among them, the special pair which is orthogonal (namely

the bisectors of (CR, CL)) would then be associated with a certain uniform motion having no special
physical properties: in fact, it was one of the primary ideas of special relativity theory that systems
in uniform motions are physically undistinguishable . So, as in the Galilean case, we keep the idea
that the orthogonality of the rest system is only a convenient convention, but there is a whole class
of equivalent representations of the planar relativistic spacetime in which the following notions have
an absolute meaning: i) the light lines (CR, CL) and ii) the systems of conjugate pairs (∆v ,∆

′
v) for

the coordinate axes of uniform motions, including the rest system.

ii) ”superluminal motions”:

For O0, the line ∆′
v might be interpreted as the worldline of a superluminal motion with

velocity 1
v
(= c2

v
)...But this would be very strange, since all the events of that line are perceived as

simultaneous by Ov: for the latter, a hypothetic observer O′
v with worldline ∆′

v would then have
the ”ubiquity property” (tv = 0, xv arbitrary)! The interpretation of this motion would become
even more paradoxical for an observer Ow with velocity w such that v < w < c. In fact, one can
easily check geometrically (by using the property a) of conjugate pairs in the previous remark) that
for Ow the line ∆′

v is parametrized by a time-coordinate tw which is negative decreasing, while t
is positive increasing: for Ow, the hypothetic observer O′

v would be travelling back to the past !

The latter remark strenghtens the meaning of part a) of our fourth postulate and justifies
that the cones V + and V − be considered respectively as the absolute future and past of the event
O. It can now be fully understood that all events represented by points X outside the union of
V + and V − (like the points of any line ∆′

v) are in acausal relation with the event O: no physical
signal can propagate either from O to X or from X to O.

2.3 Space-ships’ flight: the anniversary curve

So far, we have discovered the conjugate directions of the space and time coordinate axes of all
observers in uniform motions, but what remain unknown are the scales of time and length along
these axes. As a matter of fact, we already see that only the scale of time remains a problem, since
once it is known, the scale of length immediately follows from the knowledge of the velocity of light
(universal for all uniform motions).

To set this problem of time scaling in an illustrative way, we consider a set of space-ships
flying away simultaneously from the same place, let us say at the event O, along the unique
horizontal direction Ox, but with various velocities vi either rightwards (0 < vi < 1) or leftwards
(−1 < vi < 0) (with units such that c = 1); one of them remains at rest (v0 = 0). All space-ships
contain observersOvi

equipped with identical clocks, and all these observers are invited to celebrate
the anniversary of their common departure by representing these events (each anniversary event
in the corresponding space-ship) by points correctly situated in spacetime. On what curve H of
the plane (Ox,Ot) will all these points be situated ?

In the case of Galilean spacetime where time is absolute, the answer to that question is trivial,
namely the straight line with equation t = 1. In the present framework of spacetime, governed by
the five postulates stated in Sec. 2-1, one determines the curve H by showing that it must satisfy
the following property
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Theorem: For each point X of H , there exists a tangent to H at X whose direction is conjugate
of (OX) with respect to the pair (CR, CL).

Proof: This result follows directly from the conjugacy property of space and time axes established
in Sec. 2-2 together with our fifth postulate. In fact, we know that for a given observer Ov whose
world-line ∆v = (OX) contains the anniversary event X (xv = 0, tv = 1), the straight line of
simultaneous events (tv = 1) is the parallel by X to the conjugate direction of ∆v ; in view of the
parallelogram construction, this parallel intersects CR and CL in two points M and N such that
X is the middle of MN . Now the fifth postulate asserts that for observers O′

v with velocity v′

very close to v (this is what means ”with very small relative velocities with respect to Ov”) the
corresponding anniversary event Xv′ should be represented with an excellent approximation by the
Galilean representation of Ov , namely by the point at the intersection of the world-line ∆v′ and
of the straight line with equation tv = 1, i.e. (MN). This means that, in mathematical language,
the straight line (MN) has to be the tangent to the unknown curve H at the point X (see fig.5).
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Figure 5: The anniversary curve

Now it is well-known in elementary geometry that every curve H , whose tangent at each point
X intersects two given (nonparallel) straight lines CR, CL at two points M , N such that X is the
middle of MN is a branch of hyperbola with asymptotes CR and CL.

Since it must contain the anniversary event at rest X0 = (x = 0, t = 1), the anniversary curve
H is therefore uniquely determined as the branch of hyperbola whose equation is t2−x2 = 1, t > 0
(fig.5). The anniversary point X = Xv of any observer Ov is thus given by the formulae

t(v) =
1

√

(1 − v2)
, x(v) =

v
√

(1 − v2)
(where |v| < c = 1).

It is convenient to introduce instead of the velocity v the parameter χ called the rapidity which is
defined by v = tanhχ; χ is a “hyperbolic angle“ which takes all possible values from −∞ to +∞.
The previous formulae can then be rewritten equivalently in the following form, which is similar
to the angular parametrisation of the circle:

t(v) = coshχ, x(v) = sinhχ.

2.4 Minkowskian (pseudo-)distance and the inverse triangular inequality: the twin ”para-
dox”

From the algebraic viewpoint, the hyperbolae with equation t2−x2 = a2 present strong similarities
with the circles with center O and radius R, whose equations are x2 + y2 = R2 in orhonormal
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coordinates. They are ”level curves” of a certain ”quadratic form” X → Q(X) (with X = (x, t)
or X = (x, y)) specified by a second-degree homogeneous polynomial (Q(X) = t2 − x2 or Q(X) =
x2 + y2)

This mathematical analogy between the hyperbola and the circle admits here a physical
counterpart which is very striking. In fact, after the analysis of Sec. 2-3 we naturally come to the
idea that our problem of space-ship travellers and its solution are quite comparable to the following
very elementary situation in Euclid’s planar geometry. Consider walkers equipped with identical
graduated rods who start from the same point O along various straight lines and cover the same
distance R: they all have reached the circle with center O and radius R. While the latter statement
appears trivial to us because of our visual perception of geometry, the former result concerning the
”anniversary curve” H tells us that individual time-measurements made by observers in uniform
motion or, as one says, ”proper-time measurements” inform us about the existence of a certain kind
of ”time-like distance” in spacetime between events related by physical causality. For that ”time-
like distance” which we shall also call ”Minkowskian distance”, H appears as a unit level-curve
with starting point O and in the future of O. Of course all the level-curves of that Minkowskian
distance will appear as homothetic hyperbolae centered at O with equation t2 − x2 = a2; they are
obtained from H by either a dilatation or a contraction scale factor and completion by the ”past
branches”. In fact, each of these hyperbolae contains two branches which are distinguished by the
sign of t: the branch on which t remains positive (as the anniversary curve H) is contained in the
(absolute) future V + of O, while the branch on which t remains negative is in the (absolute) past
V − of O: this is the case for the ”negative anniversary curve” which is the set of all past events X
from which a one-year travel until O is possible via a uniform motion.

In Euclidean space the notion of distance d(A,B) between two points is characterized by the
validity of the triangular inequality: d(A,B) ≤ d(A,C) + d(B,C), the equality being obtained if
and only if the points A,B,C are on the same straight line. This fact is illustrated geometrically
by constructing such triangles (ABC) with given side-lengths a, b and c: one just has to check the
intersection property of circles with centers A and B, whose sum of radii b and a is larger than
d(A,B) = c (fig.6).
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Figure 6: d(O,X) ≤ d(O,A) + d(A,X)

In the spacetime plane (Ox,Ot), which we shall now properly call the Minkowskian plane,
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a similar geometrical construction shows that there exists again a triangular inequality for the
Minkowskian distance dM , but with the inverse sign, namely we have:

Minkowskian triangular inequality: Let three points O,A,X be such that A and X be in V +,
with X in the future of A (X ∈ V +(A), then the corresponding Minkowskian distances satisfy the
inequality:

dM (O,X) ≥ dM (O,A) + dM (A,X),

the equality being obtained if and only if the points O,A,X belong to the same straight line.

The fact that dM (O,X) = dM (O,A) + dM (A,X) when O,A and X are aligned just expresses the
additivity of the corresponding proper time intervals measured by an observer whose world-line is
(OAX). Let us now consider the general case when O,A and X form a (non-flattened) triangle.
We then consider two branches of hyperbola containing the point A: the first one, called H+

O is
centered at O and lies in the future cone of O, while the other one, called H−

X is centered at X
and lies in the past cone of X (see fig.7).
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Figure 7: dM (O,X) ≥ dM (O,A) + dM (A,X)

H+
O and H−

X intersect each other at A and at another point B (such that the straight lines
(AB) and (OX) have conjugate directions with respect to (CR, CL)). Now the straight line (OX)
intersects H+

O and H−
X respectively in two points I and J such that the order of increasing times

for the events along (OX) is: O, I, J,X . We therefore have

dM (O,X) = dM (O, I) + dM (I, J) + dM (J,X) ≥ dM (O, I) + dM (J,X).

But since H+
O and H−

X are level-curves for Minkowskian distances we have:

dM (O, I) = dM (O,A) = dM (O,B) and dM (J,X) = dM (A,X) = dM (B,X),

which implies the Minkowskian triangular inequality.

We notice that what makes the difference between the Euclidean and the Minkowskian cases
is the concavity of the region between one branch of hyperbola and its asymptotes, to be compared
with the convexity of the region inside a circle.

The ”twin paradox”
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The physical interpretation of this inverse triangular inequality is the famous ”twin paradox”
of special relativity, which actually is not a paradox once one has got rid of the concept of absolute
time, since it expresses in a very illustrative way the content of the Minkowskian geometrical
structure of spacetime.

One compares the aging of two persons between two events such as O and X at which they
meet together. X can be chosen on the time-axis Ot and one of these persons is supposed to stay
on the earth, namely on the world-line (OX). During that time, the other person (which we can
imagine in O as the twin of the former) is submitted to a one-year travel in uniform motion (with
a velocity v which is not small with respect to c) until the event A is reached; then this traveller
comes back to the earth with the opposite uniform motion, namely with the opposite velocity −v.
So two years have past between O and X for the traveller, while the aging of the twin at rest was
two years plus the time represented by the Minkowskian distance dM (I, J).

Exercise: Compute dM (I, J) in terms of v
c
. In terms of the rapidity χ, one finds that

dM (I, J) = 2(coshχ− 1).

What should the value of v
c

be equal to in order to produce a shift of one year between the ages
of the twins ?

2.5 Spatial equidistance and the ”Lorentz contraction” of lengths

∆
v
 

X 

N 

M 
H 

H’ O x 

t 

∆′
v
 

Figure 8: Equidistance curve and ”contraction of lengths”

In order to complete the coordinatization of spacetime associated with an observer Ov , we
reconsider the anniversary event X = Xv of such an observer, situated at the intersection of the
curve H and of the world-line ∆v . Since the points M and N of the tangent to H at X belong
respectively to the light world-lines CR and CL and represent events which are simultaneous for Ov

with the time tv = 1, they also define the spatial-distance unit for Ov in view of our fourth postulate
(part b)). One can thus write (with a standard choice of orientation) M = (xv = 1, tv = 1),
N = (xv = −1, tv = 1). This defines the spatial unit vector [OX ′

v ] of Ov to be such that the
quadrilateral (OX ′

vMXv) is a parallelogram (fig.8). OX ′
v is thus the unit vector of the space-axis

∆′
v of Ov, conjugate to ∆v with respect to (CR, CL).

The curve of spatial equidistance H ′: It is clear that the point X ′
v is the transform of Xv by

the symmetry SR with axis CR which exchanges the rest-frame coordinate axes Ox and Ot. This
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means that if one puts Xv = (x, t) and X ′
v = (x′, t′), then x′ = t, t′ = x. Therefore X ′

v belongs to
the curve H ′ with equation

t′2 − x′2 = −1, x′ > 0,

which is a branch of hyperbola with asymptotes CR and CL, obtained from H by applying the
symmetry SR.

As we shall see in Sec.3-2, the curve H ′ can be physically interpreted as the world-line of a
uniformly accelerated motion. What is remarkable is the fact that an observer submitted to that
motion always remains spatially equidistant from the fixed event O, since the latter is the center
of the hyperbola H ′. It even remains perpetually contemporaneous of the event O (as this will be
fully explained in Sec.3).

Let us now consider the curve H ′ completed by its opposite (from the side x′ < 0), together
with all the homothetic hyperbolae H ′(a) with equations t2 − x2 = −a2 (taken for all values of
a). These are level curves of the Minkowskian quadratic form Q(X) = t2 −x2 which cover the two
regions of spacetime defined by |t| < |x|, and respectively x > 0 and x < 0. These two regions
in which Q(X) remains negative are called space-like regions. Any point X in either one of these
regions represents an event which is in acausal relation with respect to O.

The spatial triangular inequality:

The previous construction shows that for any spacelike event X ′ in a hyperbola H ′(a), the
usual Euclidean spatial distance d(O,X ′) between O and X (measured in the system (∆,∆′) such
that ∆′ = (OX)) is given by

d(O,X)2 = −Q(X).

Let now (OA′X ′) be a triangle whose three sides have spacelike directions. Then the corresponding
(spatial) lengths of these sides satisfy the following Minkowskian triangular inequality

d(O,X ′) ≥ d(O,A′) + d(A′, X ′).

The proof of the latter is immediate by noticing that the symmetric of the triangle (OA′X ′) with
respect to the axis CR (or CL) is a triangle (OAX) whose all sides have time-like directions;
moreover by construction, the spatial lengths of the sides of the triangle (OA′X ′) are equal to the
Minkowskian (proper-time) distances of the corresponding sides of (OAX). Therefore the triangular
inequality for (OAX) (see Sec.2-4) can be transported for (OA′X ′).

The contraction of lengths:

Another surprising property which results from the Minkowskian geometry of spacetime is
the famous apparent contraction of lengths. Here is the argument, which can easily be understood
geometrically with the help of fig.8. Consider a one-dimensional rigid body in uniform motion
linked with the observer Ov; at the time tv = 0, it can be represented for example as the linear
segment [OX ′

v ] (with unit length for Ov). Then the set of world-lines of all the points of that rigid
body generate a strip (in hatchings on fig.8) which is bordered by ∆v and by the parallel to ∆v

at X ′
v. The latter is the tangent to the curve H ′ at X ′

v, which intersects Ox at the point A whose
abscissa is 1

coshχ < 1. It is clear that the passage of the rigid body at time t = o in the rest system

occupies the segment [OA]: the apparent contraction of length of the moving rigid body is therefore
equal to

δ(v) = 1 −
1

coshχ
= 1 −

√

1 − v2.

2.6 Lorentz transformations in the Minkowskian plane and two-dimensional Lorentz
frames

To summarize the previous constructions, we can say that the light world-lines CR and CL separate
the Minkowskian (vector) plane with origin O into four angular regions: the future and past time-
like regions V +, V − are characterized by the positivity of the quadratic form Q(X)

.
= t2 − x2; the
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spacelike regions by the negativity of Q(X). Up to a sign, Q(X) gives the square of the distance
between O andX , but this distance is either time-like (measured by a clock) or spatial (measured by
a rod). Here is the full meaning of the non-positive-definite character of the Minkowskian quadratic
form Q(X). In contrast with the Euclidean case, the set defined by the equation Q(X) = 0 does
not reduce to O but is the union of the light world-lines CR and CL: two events separated by the
propagation of a light ray have a mutual Minkowskian distance equal to zero.

We are now going to transfer to the Minkowskian plane some basic notions of the Euclidean
plane: there is a dictionary between the languages of these two worlds, but also big differences due
to the priviledged role of the pair of straight lines (CR, CL) in the Minkowskian case. (Note however
that in the Euclidean case, a similar structure would also be recovered by a complexification of the
coordinates: the pair of ”isotropic lines” with equations x = ±iy then plays the same role as the
pair (CR, CL)).

In the Euclidean vector plane, the elementary notion of angle is complementary to the notion
of norm (or distance) in the following sense. The circles centered at the origin O are invariant under
the rotations with center O and arbitrary angle θ. These rotations R(θ) form a commutative group:
R(θ′)R(θ) = R(θ + θ′). Each system of orthonormal axes (∆,∆′) is transformed by any rotation
R(θ) into another orthonormal system (∆(θ),∆

′
(θ)). The corresponding two coordinatizations of the

Euclidean plane, denoted respectively by [OX ] = (x, y) and [OX ] = (x(θ), y(θ))θ, are such that the
Euclidean quadratic form Q(X), identified with the squared norm of the vector [OX ], is invariant:

Q(X)
.
= [OX ]2 = x2 + y2 = x2

(θ) + y2
(θ).

In the Minkowskian vector plane, it is the notion of ”rapidity ” or ”hyperbolic angle” χ which
plays the role of the angle θ. One can in fact also introduce a commutative group of transformations
L(χ) called ”the Lorentz group in the plane”; in the spirit of this paper, it is also suggestive to call
it “the group of hyperbolic rotations”. It acts in such a way that all the branches of hyperbolae
centered at the origin with asymptotes (CR, CL) are invariant under all the transformations L(χ).
Moreover all the previous statements of the Euclidean case remain valid, if one replaces the pairs
of orthonormal axes by pairs of conjugate axes (normalized by the curves H and H ′ as it has been
explained above) and if Q(X) now denotes the non-positive-definite Minkowskian quadratic form,
or ”squared (pseudo)norm” of the vector [OX ].

The Lorentz group in the plane

One can give an elementary presentation of the action of the transformations L(χ). These
transformations of the plane are linear; so it is sufficient to know their action on two independent
vectors OM , ON and convenient to choose the latter lightlike, namely along the lines CR and CL.
We put:

L(χ)[OM ] = eχ[OM ], for M in CR,

L(χ)[ON ] = e−χ[ON ], for N in CL.

The lines CR and CL (and thereby the set with equation Q(X) = 0) are separately conserved
by these transformations: in fact, they provide two one-dimensional representations of the multi-
plicative group (eχeχ

′

= eχ+χ′

). Now every vector [OX ] can be decomposed in the form [OX ] =
[OM ] + [ON ], with respect to the pair (CR, CL), so that we can define by linearity:

[OX(χ)]
.
= L(χ)[OX ] = eχ[OM ] + e−χ[ON ].

That means that the coordinates u(χ) = eχ > 0, v(χ) = e−χ > 0 of the point X(χ) with respect
to the (”light”-)basis ([OM ], [ON ]) satisfy the equation

u(χ) × v(χ) = 1,

which represents a branch of hyperbola with asymptotes (CR, CL).
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Therefore one sees that all the level curves of Q(X), either in the time-like or in the spacelike
regions and including also the light-like world-lines (Q(X) = 0), are left invariant by the action of
all the transformations L(χ). This is what we call the basic geometrical property of the Lorentz
transformations.

One also checks the commutativity property of this group, namely the validity of the relation
L(χ′)L(χ) = L(χ+ χ′) for all χ, χ′, which is built-in in the previous definition.

Transforms of conjugate axes

Let us now consider the pair of unit vectors [OX0] = (0, 1), [OX ′
0] = (1, 0) of the coordinate

axes at rest. We will show that each transformation L(χ) transports this pair into the corresponding
pair of unit vectors [OXv ], [OX

′
v ] of conjugate coordinate axes (∆v ,∆

′
v) such that v = tanhχ. To

see this, we introduce the two lightlike vectors [OM0] = ( 1
2 ,

1
2 ) and [ON0] = (− 1

2 ,
1
2 ) such that

[OX0] = [OM0] + [ON0] and [OX ′
0] = [OM0] − [ON0]. In view of the previous definition of the

action of L(χ), we thus have

L(χ)[OX0] = eχ[OM0] + e−χ[ON0] = (sinhχ, coshχ) = [OXv ],

L(χ)[OX ′
0] = eχ[OM0] − e−χ[ON0] = (coshχ, sinhχ) = [OX ′

v ].

One can also compute similarly the action of another transformationL(χ′) on the pair ([OXv ], [OX
′
v ]);

it gives another conjugate pair ([OXw], [OX ′
w ]) where w = tanh(χ+ χ′). In fact one has

L(χ′)[OXv ] = (sinh(χ+ χ′), cosh(χ+ χ′)) = L(χ+ χ′)[OX0] = [OXw],

L(χ′)[OX ′
v ] = (cosh(χ+ χ′), sinh(χ+ χ′)) = L(χ+ χ′)[OX ′

0] = [OX ′
w].

Additivity of rapidities:

The previous computation shows that the action of the commutative group of “hyperbolic
rotations” L(χ) on pairs of conjugate axes (∆v ,∆

′
v) (normalized by H and H ′) is similar to the

action of the group of rotations R(θ) on pairs of orthonormal axes. A physical interpretation of
the latter concerns the composition law of velocities: the Galilean “law of additivity of velocities”
is replaced by the Minkowskian “law of additivity of rapidities”. If a relativistic particle A has the
rapidity χ with respect to the earth and emits in the forward direction a particle B with rapidity
χ′ in its center of mass system, then B has the rapidity χ + χ′ with respect to the earth. The
corresponding composition law for velocities is therefore:

w = tanh(χ+ χ′) =
tanhχ+ tanhχ′

1 + tanhχ tanhχ′
=

v + v′

c(1 + vv′

c2
)
.

Lorentz frames and Lorentz invariance of Q(X):

Every vector [OX ] = t[OX0] + x[OX ′
0] of the Minkowskian plane can be rewritten as

[OX ] = tv[OXv ] + xv[OX
′
v ]

for any choice of congugate axes (∆v ,∆
′
v) with unit vectors ([OXv ], [OX

′
v ]). We shall also write

in short: [OX ] = (x, t) = (xv , tv)v . Choosing such a coordinatization is also called “choosing a
Lorentz frame with velocity v (or rapidity χ)” in the Minkowskian plane.

The last point to be checked for completing the parallel between the Lorentz group in the
Minkowskian plane and the rotation group in the Euclidean plane is the “invariance property of the
Minkowskian quadratic form by changes of Lorentz frame”, namely the fact that for any Lorentzian
coordinatization X = (x, t) = (xv , tv)v , one has the invariance relation

Q(X) = t2 − x2 = t2v − x2
v .
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To show this, we associate with v = tanhχ the Lorentz transformation L(−χ) (namely the inverse
of L(χ)) which pulls the pair [OXv ], [OX

′
v ] back to the pair at rest [OX0], [OX

′
0]. With every

vector [OX ] = (x, t) = tv[OXv ] + xv [OX
′
v ] we can then associate its transform [OX(−v)]

.
=

L(−χ)[OX ] = tv[OX0] + xv [OX
′
0] = (xv , tv). Then according to the basic geometrical property of

Lorentz transformations, the points X(−v) and X belong to the same level-curve of Q(x), which
proves the invariance relation written above.

Change of Lorentz frame in the light-cone coordinatization

For the rest-frame as well as for the Lorentz frame with rapidity χ, it is convenient to introduce
the corresponding light-cone coordinates of the point X = (x, t) = (xv , tv)v, namely

(U
.
= t+ x, V

.
= t− x), (Uv

.
= tv + xv , Vv

.
= tv − xv).

In fact if one puts

x = a sinhψ, t = a coshψ; xv = a sinhψv , t = a coshψv,

one obtains:
U = aeψ, V = ae−ψ; Uv = aeψv , Vv = ae−ψv .

But we know that ψ = ψv +χ (this is the action of the “hyperbolic rotation with rapidity” χ that
has been presented above). One thus obtains the very simple relations

Vv

Uv
=

V

U
× e2χ.

(or
tv − xv

tv + xv
=

t− x

t+ x
× e2χ.)

2.7 The four-dimensional Minkowski’s spacetime; tetrads, Lorentz group and Poincaré
group

Up to now we have concentrated on relativistic motions along a single direction of space (Ox),
which allowed us to construct a two-dimensional section (Ox,Ot) of Minkowski’s spacetime and to
introduce the corresponding group of Lorentz transformations in this Minkowskian plane.

We shall now show how the geometrical exploitation of the five postulates (stated in Sec.2-1)
can be extended so as to construct the full four-dimensional Minkowski’s spacetime. This can be
performed in three steps:

i) Use of the rotational symmetry for the observer O0:

According to our first postulate, the observers at rest can represent each event X as follows:

X
.
= (x1, x2, x3, ct)

.
= (x, ct)

.
= (|x| j, ct),

where j denotes a spatial unit vector (|j| = 1) which may serve to indicate a direction of motion.
In fact, if we consider uniform motions passing at O with velocity v

.
= vj oriented in a given

spatial direction j, we can reproduce all the previous considerations (from Sec.2-2 to Sec.2-6) for
representing these motions in a Minkowskian plane generated by the axis with unit vector j and
Ot. By analogy with geographical representations of space, such planes can be called meridian
planes of spacetime with respect to the observers at rest.

So we can say that by rotational symmetry (all the directions j being equivalent), the union
of anniversary curves in all meridian planes generate an “anniversary hypersurface”, still denoted
by H . This is the set of events Xv reached by all observers Ov starting together from O towards
all possible directions j of space, after one year has elapsed at their own clock. H is a sheet of
hyperboloid whose equation is

(ct)2 − (x2
1 + x2

2 + x2
3)

.
= (ct)2 − x2 = c2; t > 0
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Here we have restored the unit-independent notation including c. We shall generally keep it also in
the next sections in order to always exhibit explicitly the physical dimensionality of the quantities
involved.

This anniversary hypersurface H can be seen as providing by itself a geometrical characterization
of all the uniform motions. In fact, one can say that any pointlike object in uniform motion is
characterized by the Minkowskian vector [OXv]

.
= cu whose tip (Xv) belongs to H . Putting

u
.
= (u1, u2, u3, u0)

.
= (u, u0), one then has:

u2 .
= u2

0 − u2
1 − u2

2 − u2
3

.
= u2

0 − u2 = 1, with u0 > 0.

In the latter u2 denotes what we call the squared Minkowskian pseudonorm of u, and u is also
called a timelike unit vector (Note that the anniversary hypersurface H is now normalized at c).

Equivalently u can be characterized by the pair (χ, j), where χ is the rapidity (such that
v = c tanhχ) and j specifies the direction of the motion, according to the following formulae

u0 = coshχ =
1

[1 − v2

c2
]
1
2

,

u = sinhχ j =
v
c

[1 − v2

c2
]
1
2

j.

This leads one to call relativistic velocity vector the Minkowskian vector cu = (cu, cu0), since its
space-component admits a small-velocity expansion

cu = v(1 +
v2

2c2
) + · · · ,

which reproduces the velocity vector v in the first-order Galilean (or “non-relativistic”) approxi-
mation. The unit vector u can then be called the “dimensionless” relativistic velocity vector of the
uniform motion.

The same considerations of rotational symmetry lead us to introduce the one-sheeted hyper-
boloid with equation

(ct)2 − (x2
1 + x2

2 + x2
3)

.
= (ct)2 − x2 = −c2,

which is obtained as the union of all branches of hyperbolae H ′ in the meridian planes generated
by a space axis with unit vector j and Ot. This hypersurface, still denoted by H ′ is the set of all
points X ′

v such that the pair of axes (∆v,∆
′
v) are conjugate with respect to the light world-lines

inside the corresponding meridian plane. The (hyper)surfaces H and H ′ are represented on fig.9.

The Minkowskian quadratic form Q(x)

In view of the fundamental role played by H and H ′, we are led to introduce the following
quadratic form on the four-dimensional Minkowski’s spacetime:

Q(X)
.
= (ct)2 − x2

1 − x2
2 − x2

3,

whose level (hyper)surfaces are described as follows:

a) all the sheets of hyperboloids centered at O which are homothetic to H and lie either in
V + or in V −. They correspond to Q(X) > 0.

b) all the one-sheeted hyperboloids centered at O which are homothetic to H ′. They corre-
spond to Q(X) < 0.

c) the light-cone C whose equation is Q(X) = 0.

We shall denote by Ĥ anyone of these level hypersurfaces of Q(X).

Remark We shall use in the following the fact that the restriction of Q(X) to any spacelike hyper-
plane has level surfaces which are the sections of the previous hyperboloids by that hyperplane:
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Figure 9: A representation of the four-dimensional Minkowski’s spacetime:
Level surfaces H , H ′ of Q(X) and a conjugate pair (∆v,Πv)

these level surfaces are therefore ellipsoids (exceptionally spheres when the hyperplane is parallel
to (Ox1, Ox2, Ox3).)

ii) Conjugacy properties: the space hyperplanes Πv

The analysis of all simultaneous events with respect to any given observerOv can be performed
along the same line as in Sec.2-2, even if the geometry is a bit more complicated than in the
Minkowskian plane. In fact, the principle is always the same, being based on the second postulate
which settles the light-cone C as the primary absolute element of spacetime.

Being given an observer Ov with world-line ∆v (inside the light-cone C) and a space-direction
∆′ (i.e. by definition outside the light-cone C), these two straight lines determine a plane P which
intersects C along a pair of light-lines. Now we can say that ∆′ is a direction of simultaneity for Ov

if, in the plane P , ∆v and ∆′ are conjugate with respect to the light-lines of P : that means that
by performing the parallelogram construction of Sec.2-2 (fig.3), in the plane P , with ∆v as the
given diagonal, one obtains ∆′ as the direction of the second diagonal. In view of the universality of
the light-velocity (fourth postulate) completed again by ”isochronousness” (third postulate), this
geometrical construction remains the universal criterion of simultaneity with respect to Ov. We
shall now show the following:

Linearity property: The set of all directions of simultaneity ∆′ for Ov is a three-dimensional linear
subspace. This hyperplane Πv is physically interpreted as providing the space-slices at constant
time tv for Ov.

Let us show that if ∆′
1 and ∆′

2 are directions of simultaneity for Ov, then any direction ∆′

in the plane determined by these two directions is also a direction of simultaneity for Ov. Given
the planes P1 and P2 determined respectively by (∆v,∆

′
1) and (∆v,∆

′
2) and given any point X

of ∆v in V + , one can construct the corresponding parallelograms (OA1XB1) and (OA2XB2)
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whose all sides are light-like segments (as in fig.3 of Sec.2-2) and whose diagonals A1B1 and A2B2

are respectively parallel to ∆′
1 and ∆′

2 and intersect at the middle of OX . Since the four-points
A1, A2, B1, B2 all belong to the future light-cone C+, as well as to the past light-cone C−(X) with
apex X , they belong to their intersection which is an ellipse E: A1B1 and A2B2 are diameters of
this ellipse. If we now consider any direction ∆′ in the plane determined by ∆′

1 and ∆′
2, which

is parallel to the plane of E, we see that the diameter of E parallel to ∆′ intersects E in two
points A and B such that (OAXB) is a lightlike-sided parallelogram: therefore ∆′ is a direction of
simultaneity for Ov. This proves that the set of directions of simultaneity for Ov is a linear subspace
of the spacetime. The fact that this subspace is three-dimensional is easy to see: Assuming that it
were two-dimensional, it would determine with ∆v a three-dimensional subspace S of spacetime
outside which no spacelike direction ∆′ could be a direction of simultaneity for Ov. But let us then
pick up any spacelike direction ∆′ outside S. It determines with ∆v a plane P ′ which intersects C
along two light-lines and therefore allows one to construct a direction of simultaneity ∆” for Ov

inside P ′. Since P ′ can intersect S only along ∆v (if not, it would be contained in S and ∆′ would
be contained in S), the assumption cannot be true.

To summarize, we have associated with each world-line ∆(u) with timelike unit vector u , a
corresponding spacelike hyperplane Πv

.
= Π(u) which can be called the conjugate hyperplane to

∆v. The intersection of Π(u) with the one-sheeted hyperboloid H ′ is an ellipsoid Ev

.
= E(u) which

represents the set of all events X experienced as simultaneous at zero time and at (lightyear)
unit distance from the origin by the observer Ov with world-line ∆(u). This hyperplane and the
corresponding ellipsoid are tentatively illustrated on fig.9 (as a plane and an ellipse represented in
perspective). It is worthwhile to emphasize that the ellipsoid E(u) (as well as all the homothetic
ellipsoids having their centers on the axis ∆(u)) are perceived as spheres centered at the origin by
the corresponding observer O(u).

iii) Four-dimensional Lorentz transformations, tetrads and the invariant forms of Q(X)

We consider any given conjugate pair (∆(u),Π(u)) associated with a certain observer O(u)

in uniform motion with relativistic velocity vector u; [OX(u)] is the unit vector of the time-axis
∆(u) of O(u). We are looking for coordinatizations of the Minkowskian spacetime adapted to that
observer. Such coordinatizations can be defined by choosing triplets of unit spatial vectors [OX ′

(u),1],

[OX ′
(u),2], [OX ′

(u),3] in the hyperplane Π(u), (namely vectors whose tips belong to the ellipsoid E(u)),

and by decomposing any vector [OX ] of spacetime under the following form

[OX ] = (ct(u))[OX(u)] + x(u),1[OX
′
(u),1] + x(u),2[OX

′
(u),2] + x(u),3[OX

′
(u),3].

However the remaining problem consists in determining all possible triplets [OX ′
(u),1], [OX ′

(u),2],

[OX ′
(u),3] such that the Minkowskian quadratic form Q(X) still has the same invariant form with

respect to these new coordinates, namely:

Q(X)
.
= (ct)2 − (x2

1 + x2
2 + x2

3) = (ct(u))
2 − (x2

(u),1 + x2
(u),2 + x2

(u),3).

In fact, since the restriction of Q(X) to any hyperplane parallel to Π(u) has ellipsoidal level surfaces
which must be perceived as spheres by the observer O(u), the previous diagonal “Pythagoreanlike”
form of Q(X) characterizes the corresponding triplet [OX ′

(u),1], [OX ′
(u),2], [OX ′

(u),3] an orthonormal
system for O(u). If this is the case, we shall say that the linear transformation L(u) which transforms
the unit vectors of the rest-frame [OX ′

0,1], [OX ′
0,2], [OX ′

0,3], [OX0], into the “tetrad“ ([OX ′
(u),1],

[OX ′
(u),2], [OX ′

(u),3], [OX(u)]), is a Lorentz transformation of Minkowski’s spacetime. One can also

say that this tetrad is affiliated to the conjugate pair (∆(u),Π(u)) or also that it is admissible for
the observer O(u). In the usual terminology, each tetrad is also called a Lorentz frame when one
refers to the corresponding coordinatization of spacetime.

The construction of general Lorentz transformations rely on two basic classes of such trans-
formations which it is easy to describe.

a) The group Lort of orthogonal transformations at rest:
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We consider the group of transformations which transform the initial rest-frame into another
rest-frame whose spatial axes form a new orthonormal (positively oriented) system of the space
(Ox1, Ox2, Ox3), while the time-axis Ot is preserved. Since these transformations preserve the form
of the spatial Euclidean distance

x2
1 + x2

2 + x2
3 = x′1

2
+ x′2

2
+ x′3

2
,

they obviously leave Q(x) invariant.

b) The group Lhyp of “pure Lorentz transformations”:

Let us fix j along Ox1 and the vector ∆(u) with unit vector u
.
= u(1) in the Minkowskian

plane (Ox1, Ot). Then it is easily checked that the conjugate hyperplane Π(u(1)) is generated by the
conjugate axis ∆′

(u(1))
in the plane (Ox1, Ot) (see fig.8) together with the spatial plane (Ox2, Ox3).

We then consider the linear transformations which keeps all the vectors in the plane (Ox2, Ox3)
fixed, and acts as a two-dimensional hyperbolic rotation with rapidity χ in the plane (Ox1, Ot).
This transformation is called a pure Lorentz transformation of Minkowski’s spacetime. The corre-
sponding change of coordinates is of the form

(x1, x2, x3, ct) → (x′1, x
′
2 = x2, x

′
3 = x3, ct

′),

where the passage from (x1, ct) to (x′1, ct
′) has been given in Sec.2-6. It then follows from the

invariance property presented at the end of Sec.2-6 that one has:

Q(X)
.
= c2t2 − x2

1 − x2
2 − x2

3 = c2t′
2
− x′1

2
− x′2

2
− x′3

2
.

It also results from the study of Sec.2-6 that these transformations form a commutative group.

The most general Lorentz transformations:

In order to construct the most general Lorentz transformation, we shall compose special
transformations of the previous groups Lort and Lhyp. We also keep in mind that when such
special Lorentz transformations act on any point X of spacetime, the transform remains on the
correponding level hypersurface ĤX of Q(X) passing at X : either on a spherical horizontal section
of ĤX in the former case, or in a hyperbolic section of ĤX parallel to the plane (Ox1, Ot) in the
latter case.

Now we proceed as follows. Being given any conjugate pair (∆(u),Π(u)), one can find a trans-
formation L1 in Lort which transforms that pair into a pair (∆(u(1)),Π(u(1))), with u(1) in the plane
(Ox1, Ot). (It must transform the unit vector j of the horizontal component of u into the unit
vector of Ox1). Then there exists a unique transformation L2 in Lhyp which transforms the pair
(∆(u(1)),Π(u(1))) into the pair at rest (Ot, (Ox1, Ox2, Ox3)).

Let us now consider an arbitrary transformationL0 in Lort and define the composition product

L(u)
.
= L−1

1 ◦L−1
2 ◦ L0.

We call ([OX ′
(u),1], [OX ′

(u),2], [OX ′
(u),3], [OX(u)]) the image by L(u) of the orthonormal system (or

“reference tetrad”) ([OX ′
0,1], [OX ′

0,2], [OX ′
0,3], [OX0]), the last vector [OX(u)] being (by construc-

tion) the time unit vector for the given observer O(u). We then claim that this image is a general
admissible tetrad affiliated with the given pair (∆(u),Π(u)). This can be seen by an argument
similar to the one given at the end of Sec.2-6 for the two-dimensional case. With every vector

[OX ] = (ct(u))[OX(u)] + x(u),1[OX
′
(u),1] + x(u),2[OX

′
(u),2] + x(u),3[OX

′
(u),3],

one associates its “pull-back transform”

[OXpb]
.
= L−1

(u)[OX ] = (ct(u))[OX0] + x(u),1[OX
′
0,1] + x(u),2[OX

′
0,2] + x(u),3[OX

′
0,3].
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Then since L−1
(u) = L−1

0 ◦ L2 ◦ L1, one can make use of the fact that the successive images X1, X2

and finally Xpb of X by the sequence of transformations L1, L2 and L−1
0 remain on the same level

hypersurface of Q(X). This entails that

Q(X) = Q(Xpb) = (ct(u))
2 − x2

(u),1 − x2
(u),2 − x2

(u),3.

Conversely, one sees by the same argument that any tetrad admissible for O(u) is transformed by
L2 ◦L1 into a tetrad admissible for O0, which is thereby the image by some transformation L0 in
Lort of the reference tetrad defined by the coordinate axes.

Pseudoorthogonality and the group property of Lorentz transformations

Being given any pair of events X , X ′ in spacetime, let us define the following symmetric
expression

[OX ].[OX ′]
.
=

1

2
[Q(X +X ′) −Q(X) −Q(X ′)] = (ct)(ct′) − x1x

′
1 − x2x

′
2 − x3x

′
3,

in which the event X +X ′ denotes the tip of the vector [OX ] + [OX ′]. This algebraic expression
is similar to the one which defines the scalar product of two vectors x, y in terms of the squared
norms of x, y and x + y in Euclidean space. By analogy, We shall say that the vectors [OX ] and
[OX ′] are pseudoorthogonal if

[OX ].[OX ′]
.
= (ct)(ct′) − x1x

′
1 − x2x

′
2 − x3x

′
3 = 0.

It is easy to check that the vectors of the reference tetrad are mutually pseudo orthogonal.

We know that the images of any eventX by the transformations L in Lort or in Lhyp remain on
the level hypersurfaces of Q(X). Then it follows from the previous definition that the images of all
pseudoorthogonal pairs by all these transformations are pseudoorthogonal pairs. This is therefore
also true for all the Lorentz transformation L(u) constructed in the previous paragraph. So by
applying this result to the reference tetrad, we conclude that in every tetrad affiliated with any
possible conjugate pair (∆(u),Π(u)), all the vectors of the tetrad are mutually pseudoorthogonal:
so for the spacelike triplet in the tetrad, pseudoorthogonality coincides with the Euclidean notion
of orthogonality inside Π(u), while the pseudoorthogonality of this triplet with respect to [OX(u)]
is identical with the property of conjugacy introduced earlier. Taking into account the fact that all
the vectors [OX ] of a tetrad are unit timelike or spacelike vectors (i.e. such that either Q(X) = 1
or Q(X) = −1), we can say that all tetrads are systems of pseudoorthonormal vectors with respect
to Q.

In view of this characteristic property of tetrads, we can thereby conclude that the action of
any Lorentz transformation L(u) on any tetrad gives another tetrad.

It follows that the composition product of two Lorentz transformation L(u1) ◦L(u2) is another
Lorentz transformation (since it transforms the reference tetrad into a tetrad). The definition of
inverse transformations being obvious, we conclude that all the transformations L(u) form a group,
called the Lorentz group of the four-dimensional Minkowski’s spacetime.

By adjunction of the translations of space and time, one obtains the more general “inhomo-
geneous Lorentz transformations” which act on any vector [OX ] as follows:

[OX ] → (L(u), a)[OX ] = L(u)([OX ]) + a;

in the latter, a denotes a given four-vector which specifies a translation Ta of spacetime. The set of
all the inhomogeneous Lorentz transformations form a group which is called the Poincaré group.

Remark on the rest-frame and on the distorted appearance of the general Lorentz frames:

We note that among all the conjugate pairs (∆v,Πv), one and only one is orthogonal in the
usual sense. The familiar choice of this orthogonal pair (e.g. vertical-horizontal) for representing
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the rest-frame is a manifestation of our biased geometrical perception which priviledges orthogo-
nality and sedentarity. But as in the Galilean case, the observer at rest enjoys no special physical
properties with respect to any other observer in uniform motion (that’s again the “principle of
relativity”). So the verticality of the time-axis and the horizontality of space could have been cho-
sen for representing the Lorentz frame of any given uniform motion: there is nothing deep in that
choice. One can also say that the Minkowskian representation of the spacetime of special relativity
is defined for O0 (as well as for any observer Ov) up to the arbitrariness in the choice of the Lorentz
frame or in short up to a Lorentz transformation: it is the equivalence class of all these represen-
tations. But any chosen representation provides an absolute and faithful description of the events
of the universe. Another aspect of all that which deserves to be pointed out again concerns the
unavoidable “distorted visual perception” introduced by the conjugacy property. We mean the fact
that we have an ellipsoidal representation of the surfaces which are actually perceived as spheres
by observers in uniform motion. Probably the best way for becoming familiar with that strange
aspect of the Minkowskian representation consists again in using the metaphor of geographical
maps. One can always represent a land on a map equipped with oblique coordinates and different
scales of length on the two coordinate axes. That’s awkward for our perception, but it remains
an absolute and faithful description of the land. In the Minkowskian representation of spacetime,
this is the price to pay for having a global geometrical description of the all the “spatial slices“,
corresponding to all possible observers in uniform motion !!

3 Accelerated motions and curved world-lines

The only motions that have been considered for stating the postulates of special relativity and for
constructing Minkowski’s spacetime are uniform motions. Their world-lines are oriented straight
lines whose direction belongs to the cone V + and one also call them inertial motions by referring
to the fact that no force is acting on a pointlike object whose motion is of that type. Under the
name of accelerated (or noninertial) motions we shall denote the most general type of motion; such
a motion is geometrically represented by a curved world-line in Minkowski’s spacetime. A curved
world-line is smooth if it is an oriented smooth curve admitting at each point a tangent whose
direction belongs to V +. A general world-line can be considered as an oriented union of smooth
curved world-line segments. From the physical viewpoint, objects endowed with motions of such a
general type are submitted to the action of a time-dependent force and to additional shocks which
produce possible discontinuities in the direction of the tangent to the corresponding world-line.
Here we shall keep outside the treatment of dynamical problems of special relativity (except for
the special case of uniformly accelerated motions considered in Sec.3-2). In fact, we shall only
concentrate on the kinematical aspects of these motions, which can be presented in terms of the
Minkowskian geometry of curved world-lines by pursuing our analogy with Euclid’s geometry.

3.1 Curvilinear distances and the slowing down of clocks

Recall on Euclidean space: Let γ be any curved path with end-points A and B in Euclidean space
R3; we suppose it to be smooth or composed of a finite succession of smooth paths. Mathematically,
the length dγ(A,B) of the path γ is defined by the theory of curvilinear integrals as

dγ(A,B) =

∫

γ

ds,

where ds denotes the Euclidean length element

ds = [dx2
1 + dx2

2 + dx2
3]

1
2 .

This theory involves the following ideas:

i) conceptually, dγ(A,B) appears as the limit for N tending to infinity of the length dN of an
approximate polygonal path composed of successive small linear paths of equal lengths 1

N
, whose

end-points Aj all belong to γ, with A1 = A and d(AjN , B) ≤ 1
N

. The points Aj can be constructed
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recursively by the following rule: Aj is at the intersection of γ with the sphere of radius 1
N

centered
at Aj−1 (and such that Aj 6= Aj−2).

ii) physically, the length of the path γ can be measured by using a flexible graduated ribbon.

iii) numerically, the previous curvilinear integral can be computed by introducing any parametriza-
tion of the form x

.
= (x1, x2, x3) = x(t) of γ, where t is a parameter varying between tA and tB ,

such that x(tA) = A and x(tB) = B. One then has:

dγ(A,B) =

∫ tB

tA

ds

dt
dt.

The Minkowskian length or ”proper time” of a curved world-line:

The previous Euclidean considerations admit a close parallel for curved world-lines in Minkowski’s
space.

Let γ be any general curved world-line with initial and final events A and B in Minkowski’s
spacetime R4: the event B lies in the future of A (namely in the future cone V +(A)). Mathe-
matically, the Minkowskian length dγ(A,B) of the world-line γ is again defined by the theory of
curvilinear integrals as

dγ(A,B) =

∫

γ

ds,

but ds now denotes the Minkowskian length element or ”proper-time element”

ds = [(c dt)2 − dx2
1 − dx2

2 − dx2
3]

1
2 .

This theory involves the same ideas as in the Euclidean case, but their physical interpretation
in terms of time-measurements must now be kept in mind:

i) conceptually, dγ(A,B) again appears as the limit for N tending to infinity of the Minkowskian
length dN of an approximate polygonal path. This path is composed of successive small linear
paths of equal Minkowskian lengths or time=like distances 1

N
, whose end-points Aj all belong to

γ, with A1 = A and d(AjN , B) ≤ 1
N

. The points Aj can now be constructed recursively by the

following rule: Aj is at the intersection of γ with the sheet of hyperboloid H+
Aj−1

( 1
N

) centered at

Aj−1 and whose all points lie in the future of Aj−1 and at the time-like distance 1
N

from Aj−1:
this sheet of hyperboloid is homothetic of the anniversary surface of Aj−1 with the scaling ratio
1
N

.

ii) physically, the (time-like) length of the path γ can be measured by using a clock which has
to be as much unsensitive to accelerations as possible. The fact that atomic clocks satisfy such
requirements with a high degree of robustness against strong accelerations has been established
experimentally in various works around 1960 (see in particular the article by Sherwin [S]).

iii) numerically, the previous curvilinear integral can again be computed by introducing any relevant
parametrization of the path γ, but a specially significant parametrization results in a very nice
formula due to Einstein.

Einstein’s formula for the slowing down of clocks:

One assumes that the events A and B occur at the same point xA = xB in the rest system,
so that physically the path γ may represent any motion starting from xA at time tA and coming
back to the same point at time tB .

Let us now choose precisely the time-coordinate t in the rest system as a relevant parameter
for the description of γ; the latter is thus given by a parametrization of the following form:

(x, ct)
.
= (x1, x2, x3, ct) = (x(t), ct), with tA ≤ t ≤ tB .
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One then has:

ds

dt
= c

[

1 −

(

dx1

cdt

)2

−

(

dx2

cdt

)2

−

(

dx3

cdt

)2
]

1
2

= c

[

1 −

(

v(t)

c

)2
]

1
2

,

where dx(t)
dt

.
= v(t) represents the instantaneous velocity of the motion in the rest-frame at the

rest-time t. By plugging the latter expression of ds
dt

in the curvilinear integral for dγ(A,B), one
thus obtains:

dγ(A,B) = c

∫ tB

tA

[

1 −

(

v(t)

c

)2
]

1
2

dt ≤ c(tB − tA).

This formula thus exhibits the general phenomenon of ”slowing down of the clock attached to the
world-line γ” with respect to the clock at rest. It provides a quantitative physical formulation of
the following geometrical statement (namely the most general form of the Minkowskian triangular
inequality):

”IN MINKOWSKI’S SPACETIME, ANY TIME-LIKE STRAIGHT-LINE SEGMENT IS LONGER
THAN ANY CURVED SEGMENT WITH THE SAME END-POINTS.”

Remark The previous computation provides an expression for the slowing down

σγ
.
= (tB − tA) −

1

c
dγ(A,B)

which exhibits a very simple first-order approximation at low velocities ( v
c

small). One gets:

σγ =

∫ tB

tA

1

2

v(t)2

c2
dt = (tB − tA)

v2
M

2c2
,

where v2
M denotes the mean squared velocity of the motion with world-line γ between the initial

and final times. This formula is remarkably interesting for performing experimental checks of the
slowing-down phenomenon, since vM may for example be related to the temperature of atoms in
thermal motion (see [5] and references therein).

3.2 Minkowski’s description of accelerations

The instantaneous relativistic velocity vector for a general motion

We have seen in Sec.2-7 that any pointlike object in uniform motion is intrinsically charac-
terized by its normalized relativistic velocity vector u, which is a unit vector in the Minkowskian
sense: u2 .

= u2
0 − u2 = 1. We can then pursue the parallel between smooth Euclidean curved lines

and Minkowskian world-lines by considering in both cases the notion of unit tangent vector u(X0)
at any point X0 of the line. If the line is parametrized by the length parameter s via a vector
equation of the form X = X(s), one then defines u(X0) at X0 = X(s0) by the equation:

u(X0) =
d

ds
X(s)|s=s0 .

In both cases the squared norm or pseudonorm of u(X0) is equal to 1, since one has in view of the
definition of ds2:

a) in three-dimensional Euclidean space (as an example)

u(X0)
2 =

(

dx1

ds

)2

+

(

dx2

ds

)2

+

(

dx3

ds

)2

= 1.

b) similarly in Minkowskian spacetime:

u(X0)
2 =

(

c
dt

ds

)2

−

(

dx1

ds

)2

−

(

dx2

ds

)2

−

(

dx3

ds

)2

= 1 with
dt

ds
> 0.
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In the latter case, cu(X0) will be called the instantaneous relativistic (or Minkowskian) veloc-
ity vector of the motion (X = X(s)) at the event X0. u(X0) can be called the dimensionless
instantaneous velocity vector.

The acceleration vector:

According to Minkowski, one defines the acceleration vector γ(X0) at X0 as

γ(X0)
.
= c2

du(X(s))

ds
|s = s0.

In the latter, the normalization factor c2 ensures the right dimensionality LT−2 of acceleration.
Then by taking the derivative with respect to s of the equation u(X(s))2 = 1, we obtain the
pseudoorthogonality relation

γ(X).u(X)
.
= γ0u0 − γ1u1 − γ2u2 − γ3u3 = 0

which is valid for all points X = X(s) of the world-line. In other words:

The Minkowskian acceleration γ(X) is always a spacelike vector which is conjugate to u(X). The
physical interpretation of the latter is that at any event X0 of the world-line, the vector u(X0)
indicates the corresponding time-axis ∆(u(X0)) of the traveller, while the acceleration vector γ(X0)
is contained in the conjugate hyperplane Π(u(X0)), interpreted by the traveller as the Euclidean
space at time zero. Then the Euclidean norm of this vector defines the intensity of the acceleration
which is felt by the traveller at the event X0. In view of the sign convention for defining the squared
Minkowskian pseudonorm of γ(X0), which is negative, it is given by

|γ(X0)| = (−γ(X0)
2)

1
2 .

Uniformly accelerated motions

We shall now present the Minkowskian treatment of one-dimensional uniformly accelerated
motions. Under this name, we now mean the motions represented by a world-line in a Minkowskian
two-dimensional plane (Ox,Ot), whose acceleration’s intensity |γ(X)| is a constant γ. That means
that the tip of the spacelike vector γ(X) varies on a branch of hyperbola centered at O and
homothetic either to the curve H ′ or to its opposite in that plane (see Sec.2-5).

We will check that all such branches of hyperbolae together with those obtained from the latter
by spacetime translations are themselves the world-lines of uniformly accelerated motions. (For
simplicity, we shall skip the proof of the fact that they represent all the one-dimensional uniformly
accelerated motions). We introduce such hyperbolic world-lines by the following parametrization
in which the parameter τ will be seen to be the proper time of the motion (the notation τ being
thus substituted to the length notation s = cτ of the previous paragraph).

X = X(τ)
.
= (x(τ), ct(τ)) :

x(τ) = a cosh
cτ

a
+ x0, ct(τ) = a sinh

cτ

a
+ ct0.

We just have to compute successively:

u(X(τ)) =
d

d(cτ)
X(τ) = (u1(τ), u0(τ)) :

u1(τ) = sinh
cτ

a
, u0(τ) = cosh

cτ

a
,

which shows that u(X(τ))2 = 1.

γ(X(τ)) = c2
d

d(cτ)
u(X(τ)) = (γ1(τ), γ0(τ) :
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γ1(τ) =
c2

a
cosh

cτ

a
, γ0(τ) =

c2

a
sinh

cτ

a
,

from which it follows that γ(X(τ))2 = − c4

a2 is constant and yields the value γ = c2

a
for the

acceleration. So one can say that the acceleration is proportional to the “time-curvature” 1
a

of the
world-line.

Remarks

a) Non-relativistic (or Galilean) approximation: It is clear that the hyperbolic world-line with

equation x2 − (ct)2 = a2 or x = [(ct)2 + a2]
1
2 admits as a second-order approximation near the

event x = a, t = 0 the familiar parabola with equation

x = a+
c2

2a
t2 = a+

1

2
γt2

,

b) In Euclidean geometry, the “osculating circle” at a point X of a Euclidean curve is obtained
as the limit of the circle containing three neighbouring points of the curve, when these three points
tend together to X . Minkowski introduced similarly (in[M]) a notion which can be called the
“osculating uniformly accelerated motion” of a general motion at the event X : its world-line is the
limit of a hyperbolic world-line containing three neighbouring events of the general motion, in the
limit when these three events tend to X .

3.3 A comfortable trip for the ”Langevin traveller”

The standard presentation of the ”twin paradox” (or ”Langevin traveller”), which amounts to a
direct trip with return between a point of the earth and some far-distant space station S, with
large uniform velocity v in both directions, is remarkable by its beautiful pedagogical simplicity.
In fact, we have seen in Sec.2-4 that it exactly illustrates what we called in geometrical terms the
Minkowskian triangular inequality. However, since it appeared in the literature, various objections
have been raised whose point was generally to conclude that this was a school example, which
was probably physically incorrect or at best unrealistic. This type of opinion has also been often
endorsed by vulgarizers of special relativity, as a reassuring thought with respect to what looks
like a scandal for the common sense.

The main objection was about the instantaneous passage from velocity v to velocity −v
when reaching the term of the travel. Such passage had to be produced by a shock, or even if
smoothened by some decelerating device, it seemed to involve so large accelerations that certainly
the biological organisms and maybe the clocks themselves could not stand such constraints. Now in
view of Minkowski’s study of uniformly accelerated motions (presented above in Sec.3-2), one can
actually show the possibility of organizing a more comfortable trip for the Langevin traveller, in
which the latter would be submitted to a constant acceleration (or deceleration) We even impose
(for making the acceleration biologically normal) that its value be precisely equal to the value of
the gravity acceleration g on the earth. Of course, we admit that the whole travel will take place in
the vacuum, far from any gravitational source, in such a way that the flat Minkowskian spacetime
remains a reasonably good approximation to the real spacetime.

After having specified an appropriate class of world-lines for that space-traveller, the problem,
which is purely geometrical, consists in comparing the length of proper time τ (namely the timelike
Minkowskian length) of the traveller’s world-line with the corresponding time t that will have
elapsed on the earth between the traveller’s departure and return. A table of the corresponding
values of τ and t will be given below. Its result is striking: while the maximal value of τ fits with a
reasonably long life-time for a human being (let us say eighty-six years), the corresponding value
of t reaches about five billions of years, namely the age of the earth !!

Of course, a second problem (which has a touch of dream as in anticipation novels. . .) concerns
the production of the constant acceleration for the spaceship on which the traveller is going to live.
If the acceleration is produced by either expelling or disintegrating a mass of matter aboard the
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spaceship, as in conventional rockets, one can make a simple computation of the minimal mass
consumption based on the relativistic law of energy-momentum conservation (see Sec.5 below).
Assuming that all the disintegrated mass is transformed into photons (which is the most favourable
process) it is possible to compute the ratio between the remaining mass M(τ) at proper time τ
and the initial mass M0 of the spaceship. The set of values which are listed in the table indicate
that that for τ larger than twenty years, the procedure becomes radically unrealistic. In fact, the
mass to be loaded aboard the spaceship then becomes a non-negligible fraction of the mass of
the earth (which also means that gravitational effects have to be taken into account; the use of
flat Minkowski’s spacetime is no longer justified). But the limitations of this procedure do not
exclude the consideration of other types of possible propulsions, which could make use for instance
of energies available in the cosmic medium.
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Figure 10: A comfortable motion for the Langevin traveller

Choice of the motion:

The trajectory is along a straight line joining the earth, denoted by S0, and the space station
S considered as at rest with respect to the earth. The travel which is proposed is composed of

i) a uniformly accelerated motion with acceleration g from S0 to the middle M of S0S;

ii) a uniformly accelerated motion with acceleration −g from M to S (namely a phase of
deceleration);

iii) the acceleration −g is maintained as in ii) and produces half of the returning trip from S

to M ;

iv) the acceleration is shifted from −g to g for producing a uniformly decelerated motion from
M to S0.

It is clear that the discontinuity of the acceleration (from g to −g) produced at M is bearable
by the physical and biological systems in the spaceship: if g is equal to the value of the gravity
acceleration on the earth, it is just felt as a sudden inversion of the direction of gravity.

The spacetime representation of this motion is a worldline composed of three successive arcs
of hyperbolae with centers a, d and b (see fig.10), namely:

i) an arc AC joining the departure event A on S0 to the end of the acceleration phase C
at the point M ; this arc is parametrized by the proper time τ of the spaceship according to the
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following equations:

x =
c2

g
(cosh

g

c
τ − 1), t =

c

g
sinh

g

c
τ.

ii) an arc CDE where D denotes the passage on S (no stop being expected there) and the
end-point E denotes the passage at M in the way back.

iii) an arc EB representing the last deceleration phase whose end-event B represents the
arrival on S0.

As it is visualized on fig.10, the arcs CD, DE, and EB of the traveller’s worldline are obtained
from the arc AC by obvious symmetries and it is clear that the total traveller-time length τB of
the travel as well as the corresponding earth-time length tB are respectively equal to four times
the traveller-time length τC and the corresponding earth-time length tC that have elapsed between
A and C. In view of the equations of AC this yields the following relation between tB and τB :

tB = 4
c

g
sinh

g

c

τB

4
.

It is pleasant to notice that with our choice of units (i.e. years and lightyears) not only c = 1 but
also the earth’s value of g is very close to 1. We thus obtain the very simple formula

tB = 4 sinh
τB

4

whose numerical application can be found in the table.

We notice that for small values of the travel’s length of time τB , namely between zero and four
years, the corresponding values of the earth-time length tB is not very different; this is because τB
is the first-order approximation of 4 sinh τB

4 at small τB . But for larger travel’s lengths of time, the
exponential character of the sinh function becomes preponderous, which yields such overwhelming
discrepancies as two-thousand years of earth’s time for twenty-eight years of travel’s time and. . .
geologicallike ages for seventy years of travel’s time !

Mass decrease required for the spaceship’s propulsion

The equation for the rate of mass decrease will be fully justified in Sec.5 on the basis of the
relativistic law of conservation of the total energy-momentum of the system. This equation is

d

dτ
M(τ) = −

g

c
M(τ) = −M(τ),

which therefore yields the formula
M(τB) = M0e

−τB

illustrated numerically in the table.

4 On the visual appearance of rapidly moving objects: Lorentz contraction re-
visited

Although being valid as a two-dimensional geometrical property of Minkowski’s spacetime in a
plane (Ox,Ot) , the property of “contraction of lengths” described in Sec.2-5 differs from what
would actually be seen by an observer (or a camera) at the passage of a rapidly moving object. As
a matter of fact, according to the original Terrell’s work [6] (see also [?, W1] the analysis of the
actual physical phenomenon can be summarized as follows.

i) Even if the moving object S is one-dimensional, namely is an infinitely thin rod alined
with the motion trajectory Ox (as considered in Sec.2-5), one must consider the observer at rest
O as situated at a certain distance d of Ox. Therefore the actual visual appearance of the rod for
such an observer at a certain time t = t0 is obtained by determining the set of light world-lines
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[h]

The “Langevin traveller” in uniformly accelerated motion

traveller’s proper time

τ (in years)

earth’s proper time

t (in years)

M(τ)
M0

1 1 and 4 days 0.37

2 2 and 1 month 0.13

4 4.7 0.02

8 14.5 4× 10−4

12 40.1 8× 10−6

16 104 1.6× 10−7

20 297 3.2× 10−9

28 2, 200 1.3× 10−12

32 5, 960

40 44, 000

48 326, 000

60 6.54× 106

72 131× 106

84 2.64× 109

86 5 billions

1
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which have been emitted from all the points of the rod in the past of t0 and which converge at the
corresponding “reception event” O(d, t0) of the observer O. This determines the “photograph” of
the rod at time t0. When the value of t0 varies, the geometrical construction of the relevant light
world-lines results in modifications of the direction of observation and of the apparent length of
the rod; these modifications of the visual appearance of the object for the observer O at rest will
thus accompany the motion of the object. In other words, the aspect of the rod on the photograph
will vary with time by combining the relativistic property of contraction of lengths together with
perspective effects; the latter are comparable to those which occur in ordinary space when changing
the direction of observation in order to catch successive situations of the moving object (in a purely
Galilean treatment with infinite light-velocity).

ii) The previous type of analysis being taken into account, a more realistic study still has
to be done for the case of a three-dimensional object. For instance, it is interesting to consider a
cube-shaped or spherical object S whose center moves along the axis Ox and whose size may be
considered as small with respect to the distance d from the observer to Ox. It turns out that the
visual appearance of such thick objects never exhibits the phenomenon of contraction of lengths
in the direction Ox as it was pictured in Gamov’s famous book (“The adventures of Mr Tompkins
in the land of special relativity”). As a matter of fact, the observed appearance of an object at
successive times exhibits a perspective effect whose corresponding (“virtual”) direction of obser-
vation is shifted with respect to the real direction of observation, as though the perspective were
accompanied by an “anomalous rotation effect”. This apparent change of direction of observation
is a typical geometrical effect of Minkowski’s spacetime: it is characterized by an angle called “the
relativistic aberration”. It is interesting to note that for the special case of a spherical object, the
disk-shaped appearance remains for all the directions of observation which accompany the object’s
motion.

The relativistic aberration:

Let S and O represent two given events of spacetime corresponding respectively to the emis-
sion of a light beam by a pointwise object and to the reception of this light beam: O belongs to the
future light-cone C+(S) of S. The object is in uniform motion with respect to the rest-frame of an
observer O who will observe the reception event at O. This uniform motion is characterized by its
world-line ∆(u) which we choose to belong to the plane (Sx, St) (the point S is contained in ∆(u);
it now plays the role of the origin of Minkowski’s spacetime, called O in Sec.2). χ and v = tanhχ
will denote the rapidity and velocity of the motion; d denotes the distance from the observer O to
the motion’s line Sx of the object. At O, the light beam coming from the object is received by the
observer O from a direction which includes the angle θ with the axis Sx in the coordinate-plane
(Sx, Sy) and tO denotes the corresponding reception time.

From these data, we can express the coordinates of the reception event O in the rest frame
as follows

(x = ctO cos θ, y = d = ctO sin θ, z = 0, t = tO).

(Note that in all the argument the scenario remains in the three-dimensional spacetime (Sx, Sy, St)).

With [6] we now introduce another observer O′ who is at rest in the frame of the moving
object and whose world-line (parallel to ∆(u)) contains the point O: that means that this moving
observer O′ “shares with O” the reception event O of the light beam emitted by the object at S,
although the latter is now seen as “at rest” by O′. At this event O, O′ receives the light beam
from a direction which includes the angle θ′ with the corresponding space-axis Sx′ of the object’s
Lorentz frame: this axis Sx′ is conjugate of ∆(u) in the plane (Sx, St). The space hyperplane Π(u)

of O′ is in fact generated by the three axes Sx′, Sy, Sz, the coordinates y and z being unchanged
with respect to those of the rest-frame of O.

We can now express the coordinates of the reception event O in the Lorentz frame of O′ as
follows

(x′ = ct′O cos θ′, y = d = ct′O sin θ′, z = 0, t′ = t′O).
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It is the difference α
.
= θ′ − θ which is called the relativistic aberration and the basic computation

which remains to be done is to compute θ′ and thereby α as a function of θ and of the rapidity χ
(or velocity v) of the object.

Comparing the two representations of O leads one to introduce at first the ratio

M
.
=
tO

t′O
=

sin θ′

sin θ
.

We now make use of the formulae for the change of Lorentz frames in the light-cone coordinates
(see the end of Sec.2-6). Applying this formula to the event O (or more properly to its projection
onto the plane (Sx, St)) by putting

U = ct+ x, V = ct− x, U ′ = ct′ + x′, V ′ = ct′ − x′,

we get :
V

U
= tan2 θ

2
,
V ′

U ′
= tan2 θ

′

2
,

which yields : tan
θ′

2
= tan

θ

2
× eχ.

The latter relation defines a function θ′ = θ′(θ, χ) which enjoys the following properties:

a) for fixed χ, θ and θ′ tend together either to zero or to infinity;

b) for θ = π
2 (resp. θ′ = π

2 ), one has sin θ′ = 1
coshχ (resp. sin θ = 1

coshχ ), where 1
coshχ =

(1 − v2

c2
)

1
2 is the Lorentz contraction factor (see Sec.2-5).

The visual appearance of extended objects

Let us now suppose that the moving object is extended instead of being pointwise, but that
its extension is small with respect to the distance d at which the observer O is standing, and to
begin with, that it is “flat for the observer O” (and therefore also for O′): that means that the set
of its world-lines form a small cylinder parallel to ∆(u) in the subspace (Sx, Sy, St); there is no
extension in the third direction Sz.

We now consider the small angles dθ and dθ′ subtended by the object, as they are seen from
O respectively by the observers O and O′, namely in the planes respectively parallel to (Sx, Sy)
and (Sx′, Sy). It is clear that the relation between these two angles is obtained by differentiating
(at fixed χ) the previous relation between θ, θ′ and χ. The result is:

dθ′

dθ
=

sin θ′

sin θ
= M

This ratio M of the subtended angles, or of the apparent dimensions of the object when passing
from the observer O to the observer O′, can thus be called the magnification. What is remarkable
in that relation between dθ and dθ′ is that (eventhough θ′ is a function of θ and χ), it does not
depend explicitly of the rapidity χ.

As a matter of fact, one can even give a still nicer interpretation of it by introducing the
distances r and r′ at which the (small) object is seen respectively by O and O′. Concerning r′ it
is of course a fixed distance, since the object is at rest for O′ and one has (in the plane parallel to
(Sx′, Sy) by O)

d = r′ sin θ′.

Concerning r, it is the distance from O (in the plane (Sx, Sy)) of the position occupied by the
object at the emission event S and one thus also has

d = r sin θ.

It then immediately follows from these relations that one has:

rdθ = r′dθ′,
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which means that the dimensions of the object transversally to the directions of observation of
O and O′ are equal. One can now see very simply that a similar result is valid for general small
objects having also an extension in the direction Sz. In fact, the component along Sz of the object
is the same in the rest frame as in the Lorentz frame where the object is at rest; it therefore has
equal transversal extensions dz = dz′ along Oz for both observers O and O′, which entails:

rdθdz = r′dθ′dz′

This means that the surface transversal dimensions of the object with respect to the directions
of observation of O and O′ are equal: the perspectival shapes and dimensions of the object are
the same when the object is moving as when it is fixed, provided one replaces the actual direction
of observation of the moving object, namely the angle θ, by the “virtual” direction θ′ = θ′(θ, χ)
corresponding to its observation as a fixed object.

However, in view of the different distances r and r′ from O and O′ to the object, this identity of the
perspectival shapes and dimensions is modified from the angular viewpoint by the magnification
factor

M =
dθ′

dθ
=

r

r′
,

whose expression as a function of θ and χ is:

M(θ, χ) =
sin θ′(θ, χ)

sin θ
.

This transformation can be seen as a certain conformal mapping on the unit sphere for regions of
small subtended solid angle.

D’
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Figure 11: Passage of a ”relativistic bus”: The relativistic aberration and the apparent rotation

Practical Geometrical Construction:

In order to represent how the object with rapidity χ is seen by the observer O from the
direction with angle θ, one determines the direction with angle θ′ = θ′(θ, χ) from which it is seen
by O′ as a fixed object. One then applies to the fixed object (with its true dimensions) a rotation
with angle α = θ′ − θ (i.e. the relativistic aberration) before settling it at the point where O
expects to see it from the direction θ. This is the correct perspective under which O will see the
object from that direction. This procedure has been illustrated on fig.11 by taking the example of
a “relativistic bus”. It is now clear that if the object is spherical, its disk-shaped appearance and
dimension is preserved for all possible directions of observation.

What about the “hidden Lorentz contraction” ?

Having obtained the previous general result, let us come back to our very first case of an
infinitely thin rod with length l, oriented along Sx and moving along Sx with rapidity χ. Assume



40 J. Bros Séminaire Poincaré

that one fixes θ = π
2 , which means that the observer O at rest looks at the rod from the direction

Sy where he or she is sitting. By refering to the geometrical argument of Sec.2-5, one easily checks
that in that case the observer does observe a Lorentz contracted rod with apparent length l

coshχ .

Now let us look at it from the viewpoint of the general result. This rod is seen by O′ as a fixed
rod from a direction defined by the angle θ′ such that sin θ′ = 1

coshχ (see above the property b) of

the function θ′(θ, χ) Then by applying the previous Practical Geometrical Construction, one sees
that the observer O must see the rod as if it were rotated by the angle α = θ′ − π

2 , so that its
perspectival length is

l × sin θ′ =
l

coshχ
,

the corresponding angle subtended by the object being equal to l
d

1
coshχ .

The rotation has exactly reproduced the Lorentz contraction !!

Observing the object without perspective effect

In the Galilean treatment (with infinite velocity of light), the object is observed by O without
perspective effect when the direction of observation is perpendicular to the line of motion, namely
when θ = π

2 . In the case of Minkowski’s spacetime, the corresponding phenomenon is obtained
when θ′ = π

2 , namely when the observer O′ sees the object without perspective effect. Then the
identical effect is obtained by O provided his or her direction of observation includes an angle θ0

with the motion’s axis. According to property b) of the function θ′(θ, χ), this angle θ0 is such that

sin θ0 =
1

coshχ
.

For the case of the infinitely thin rod, we see that it appears to the observer O with its exact length
l when looked at in that direction, but from the angular viewpoint the subtended angle remains
(because of the “magnification factor”) l

d
1

coshχ . . . i.e. the same as for the Lorentz contracted
appearance at θ = π

2 !

In conclusion, the effects of perspective modified by the relativistic aberration, which acts as
a rotation, are clearly defined for describing the visual appearance of moving objects of general
shape. The concept of “Lorentz contraction”, although perfectly clear in two-dimensional space-
time, then becomes hidden as far as the observation of three-dimensional objects is concerned; it
may be restored in the special case of thin objects, but the term is of subtle use and semantically
confusing. . .

5 The Minkowskian energy-momentum space: E=Mc2 and particle physics

In the Newtonian dynamics, based on the Galilean conception of spacetime, one introduces for
each massive pointlike object with mass m and constant velocity v its momentum p = mv. For
any isolated dynamical system composed of such objects, their velocities and momenta depend on
time, but the total momentum, namely the vector sum P of all the corresponding momenta, must
be conserved at all times. The other quantities which have to be conserved at all times are a) the
total energy E of the system, and b) the masses of the various objects, since the latter are supposed
to conserve their individualities for all times.

In the framework of special relativity, each massive pointlike object with mass m in uniform
motion is now characterized by its relativistic (or Minkowskian) velocity vector cu. According
to Einstein“s beautiful idea, one can now associate with it a relativistic four-momentum vector
p = mcu, which can be represented in the coordinates of the rest-frame as follows:

p = (p, p0); p = mc sinhχ j = mv[1 −
v2

c2
]−

1
2 , p0 = mc coshχ = mc[1 −

v2

c2
]−

1
2 .

The (tip of the) vector p thus belongs to the upper sheet of hyperboloid H+
m with equation

p2
0 − p2

1 − p2
2 − p2

3 = m2c2, p0 > 0.
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The space-component p of p admits a small-velocity expansion of the following form

p = mv(1 +
v2

2c2
) + · · · ,

which therefore reproduces the Newtonian momentum mv at the first-order approximation. As for
the time-component p0, its small-velocity expansion gives

p0 = mc[1 −
v2

c2
]−

1
2 = mc(1 +

v2

2c2
) + · · · .

Multiplying both sides of the latter by c in order to get the dimensionality of an energy, i.e.
ML2T−2, one then obtains:

p0c = mc2 +
1

2
mv2 + · · · .

While the second term of this expansion is clearly identified as the kinetic energy of the massive
object in the Newtonian formalism, the first term E0 = mc2 is the ”internal energy at rest“ of the
massive object, identified (up to the dimensionality factor c2) with its mass m. In fact, when the
velocity v vanishes, the four-vector pc is along the time-axis and reduces to its time-component
E0 = mc2. One can then also say that for an arbitrary uniform motion with velocity v, the time-
component p0c of the four-vector pc is the complete relativistic energy of the moving object, whose
value is

E
.
= p0c = mc2[1 −

v2

c2
]−

1
2 = |p|

c2

v
.

This is why the four-momentum vector pc or p is also called the energy-momentum vector of the
object (the identification being often made, in view of the convenient choice of units such that
c = 1).

Remark It is very important to note that in units where c = 1, the squared mass m2 = (mc)2 of
the object is equal to the squared pseudonorm of the four-momentum vector p. It is therefore (like
the proper time of a motion) a relativistic invariant: its value is independent of the Lorentz frame
which has been chosen for describing the object.

Massive and massless free particles

In microphysics, the theoretical treatment of particles requires a quantum-mechanical frame-
work. However, this framework makes use basically of the Minkowskian space of four-momenta of
point-like massive objects that we have just described. As a matter of fact, the quantum elementary
particles with mass m are described as “wave-packets” which are probabilistic superpositions of
“classical” four-momentum configurations p = (p, p0) satisfying the so-called “mass shell” condi-
tion:

p belongs to H+
m, i.e. p2

0 − p2 = (mc)2 with p0 > 0.

Photons are similarly treated as massless particles (m = 0). The latter are thereby characterized
by a four-momentum vector p which belongs to the light-cone C+:

p0 = |p|.

The concept of massive pointlike object and of relativistic four-momentum thus keep some
meaning for describing the free particles of microphysics, namely non-interacting particles. How-
ever, it becomes meaningless for describing particles in mutual interaction, in contrast with the
case of Newtonian objects, whose momenta and energies keep their meaning as functions of the
time during the interaction.

The simplest thing that can be done a priori for describing the mutual interactions in particle
physics is to describe the relations between the four-momentum configurations of free particles
before the interaction and those which occur after interaction; in fact, for the interactions of
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nuclear type, the latter always takes place in a very short time. Then there is a basic relativistic
law, which generalizes the Newtonian laws of conservation of the total momentum and of the total
energy of the system. This law is

The law of conservation of the total energy-momentum vector of the system of free particles

This law states that if a set of several (let us say n) free particles with initial four-momentum
vectors p(1), p(2), . . . , p(n) meet together in some region of Minkowski’s spacetime where they in-
teract, then another set of free particles will emerge in the future of that region and their number

n′ is not necessary equal to n. However, the four-momentum vectors p′(1), p′(2), . . . , p′(n
′) of these

final particles are such that the following vector equality holds in the Minkowskian four-momentum
space:

p(1) + p(2) + · · · + p(n) = p′
(1)

+ p′
(2)

+ · · · + p′
(n′)

.

Of course, this implies that in contrast with the case of Newtonian pointlike objects, the particles of
microphysics do not conserve their individualities throughout the interaction. However the vector
conservation law which they obey puts some strong constraints which are consequences of the
Minkowskian triangular inequality .

Let us consider for example the case of two initial particles with four-momenta p(1), p(2)

(which is physically the generic case for the collisions produced in the accelarators). Let us call m1

and m2 the masses of these particles; one thus has:

p(1)2 = m2
1, p

(2)2 = m2
2.

Then the total four-momentum is
P = p(1) + p(2),

whose squared pseudonorm P 2 .
= M2 is interpreted as the squared total mass of the system. M is

of course a relativistic invariant, independent of the Lorentz frame. In practice one often chooses
a frame in which P is along the time-axis, which one calls the center-of-mass frame. Now , we see
that because of the Minkowskian triangular inequality applied to the triangle whose sides are

[OQ1] = p(1), [Q1Q2] = p(2), [OQ2] = P,

one has necessarily
M ≥ m1 +m2,

the equality being valid if and only if p(1) and p(2) are collinear; this means that the two particles
are both at rest in the center-of-mass frame. If they are not, the difference Mc2 −m1c

2 −m2c
2

represents the (relativistic) kinetic energy of the system.

Let us consider for example the case of equal masses m1 = m2
.
= m. Then one has M ≥ 2m.

Now, let us ask ourselves what can be the constraints on the number of final particles emerging
from the interaction. By iterating the previous geometrical argument with Minkowskian triangles,
one gets the following result.

For M < 3m, only two final particles can be produced; one will then speak of an “elastic”
collision of two particles. For 3m ≤M < 4m, either two or three can be produced; both processes
are geometrically possible. More generally, if (n − 1)m ≤ M < nm, all processes including the
production of any number of final particles smaller than or equal to n − 1 are possible. For the
production of three or more particles, one also speaks of “inelastic” collision of two particles.

One can of course generalize the previous geometrical argument to the case of particles of
different masses: note that the values of the masses of the existing particles of microphysics is a
discrete set whose determination requires the treatment of quantum relativistic dynamical theories
such as Quantum Field Theories (a very hard program which is by far outside the scope of this
paper).

Inclusion of the photons
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It is important to note that massless particles such as photons can be included in the previous
geometrical arguments. In particular one can check (by drawing the corresponding triangles) that

i) From the collision of two photons, one can obtain a total momentum whose mass M can be
arbitrarily large, so that any numer of final massive particles can a priori be produced throughout
the interaction of these two photons: “pure light can create matter“

ii) Together with the elastic collision of two massive particles, one can always expect a priori
the additional production of any number of photons, even if the total mass M (> 2m) of the system
is not very much larger than 2m.

An exercise on four-momentum conservation: “the propulsion of the Langevin-traveller’s spaceship”
(see Sec.3-3)

Let us assume that at time τ (in its proper time), the spaceship’s mass is M(τ) and that,
in its restframe, it is submitted to a constant field-strength whose intensity equal to g. Since its
velocity is equal to zero in this frame, Newton’s fundamental principle of dynamics applies and
gives:

dP

dτ
= M(τ)g.

This field strength, which ensures the propulsion of the spaceship in uniformly accelerated motion,

is produced by the expulsion of a part of the mass by unit of time, namely dM(τ)
dτ

whose associated

momentum component must be equal in intensity and opposite to dP
dτ
.

From a relativistic viewpoint, this loss of mass must in fact be identified (up to the factor c2)
with an emission of energy 1

c2
dE
dτ

under either form of a mass of matter (with relativistic velocity
v < c) or of light (i.e. photons with velocity c).

In the case of matter, these energy and momentum losses are related to the velocity by the
relativistic formula (given previously):

∣

∣

∣

∣

dP

dτ

∣
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∣

∣

=
v

c2

∣
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dE

dτ

∣

∣

∣

∣

,

which therefore yields the differential equation

dM

dτ
= −

g

v
M(τ).

In the case of photons, one has a similar relation (with v = c):

∣

∣

∣

∣

dP

dτ

∣

∣

∣

∣

=
1

c

∣

∣

∣

∣

dE

dτ

∣

∣

∣

∣

,

which yields
dM

dτ
= −

g

c
M(τ).

One concludes that the loss of mass is minimized when v = c, namely if one can dispose of an
engine which transforms matter into pure radiation.

6 Toward simple geometries of curved spacetimes

In spite of its non positive-definite distance, Minkowski’s spacetime still shares with Euclidean space
the property of being “flat”, namely an affine space. But in the same way as the Euclidean plane
must be replaced by a sphere (as a first approximation) for the observer who wishes to represent
the surface of the earth, the four-dimensional Minkowskian spacetime must be replaced by a curved
spacetime for the observer of the universe who wishes to describe the inclusion of matter submitted
to gravitational attraction and the evolutional properties of the universe at astronomical scales of
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lengths and times. What we are mentioning here concerns the second big revolution of theoretical
physics in the twentieth century: according to the principles of general relativity introduced by
Einstein in 1916 (and also independently by Hilbert in a more mathematical formulation), local
curvature of spacetime around an event X is caused by the presence of a density of matter at that
point. But there is also another type of global curvature which is linked to expansion or contraction
properties of spatial sections of spacetime; this type of curvature is characterized by what is called
a “cosmological constant”.

The general mathematical theory of curved spacetimes is outside the scope of the present
pedagogical essay and we shall only indicate here some hint about the primary concepts involved
in that theory. In mathematics, the notion of manifold introduces an additional abstraction to
geometry. In the same way as the two-dimensional surface of the earth is perceived by us as “em-
bedded in the ambient three-dimensional spacetime“, a model of curved spacetime can reasonably
be conceived as a ”surface of dimension four embedded in a flat space of larger dimension“ (for
example five). As a matter of fact, this type of geometrical representation in terms of an ”ambi-
ent space of higher dimension“ is not necessary for defining the relevant mathematical notion of
”manifold“, which has been inspired by the geographical notion of ”atlas”. In a world atlas, one
is given a set of planar representations of various regions of the surface of the earth, in such a
way that: a) each region is represented by precise geometrical rules encoded in a lattice of level
curves representing parallels and meridians which constitute a map of that region; b) whenever two
regions overlap, there are consistent geometrical rules which exhibit the correspondence between
the two corresponding maps in their representations of the overlapping region; c) the union of all
maps cover the whole surface of the earth. Such a type of collection of local data, which provides a
faithful representation of a curved surface without requiring an embedding in a higher-dimensional
ambient space, is used in the general mathematical definition of “abstract manifolds”. The concept
of atlas is thus often used for representing various models of curved spacetimes, thereby defined as
“abstract Minkowskian (or Lorentzian) manifolds”. Ie such an atlas, each map is then specified by
what one calls a system of local coordinates of space and time. The Minkowskian local structure
is specified in each given map, by prescribing in terms of the corresponding local coordinates what
are the cones of light world-lines passing at each given event X : these light world-lines will in
general appear as curved lines, constituting a “light-conoid” CX with apex X , composed of the
union of a future conoid C+

X and of a past conoid C−
X .

From the physical viewpoint, one can say that the conceptual advantage of this ”atlas-
representation” of a curved space or spacetime is to make the economy of an ”ambient space”,
which has a priori no physical interpretation. As a matter of fact, the problem of the physical
interpretation of additional dimensions introduced for mathematical reasons currently appears in
various up-to-date investigations of theoretical physics.

However for certain models, a representation making use of an embedding of spacetime in a
five-dimensional flat ambient space can be very illustrative and useful. Here of course, the word
”ambient space” is of pure mathematical nature. These models correspond to “quadratic space-
times” represented by appropriate quadrics (i.e. second-degree hypersurfaces) which enjoy the
following simple geometrical property with respect to the ambient space. At each event X of the
spacetime, the light-conoid CX is the cone of all linear generatrices of the quadrics passing at X .
These models of quadratic spacetimes have in common to be “pure-cosmological-constant models”,
which means that no density of matter is incorporated there. They enter in two classes with rather
different mathematical properties and physical interest, which are called “de Sitter” and “anti-de
Sitter spacetimes”: they are presented in Ugo Moschella’s paper.
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