

Time's arrow at the nanoscale

Christopher Jarzynski Department of Chemistry and Biochemistry *and* Institute for Physical Science and Technology University of Maryland, College Park

Macroscopic and microscopic machines

steam engine

What do the laws of thermodynamics "look like" at the nanoscale?

Work and free energy: a macroscopic example ...

Irreversible process:

- 1. Begin in equilibrium
- Stretch the rubber band
 W = work performed
- 3. End in equilibrium

 $\lambda = A$

 $\lambda : A \rightarrow B$

 $\lambda = B$

Work and free energy: a macroscopic example ...

Clausius inequality :

$$W_{A \to B} \ge \Delta F \equiv F_B - F_A$$

$$\left(\int_{A}^{B} \frac{dQ}{T} \leq \Delta S\right)$$

... and a microscopic analogue

- 1. Begin in equilibrium
- Stretch the molecule
 W = work performed
 - $\lambda : A \rightarrow B$

 $\lambda = A$

 $\lambda = B$

- 3. End in equilibrium
- 4. Repeat

... fluctuations are now important !

So what's new?

Fluctuations in W satisfy strong and unexpected laws.

e.g.
$$\left\langle e^{-\beta W} \right\rangle = e^{-\beta \Delta F}$$
 C.J., PRL 1997 $\left(\beta = \frac{1}{k_B T}\right)$

... places a strong constraint on the work distribution

 $-\mathsf{W}_\mathsf{R} \leq \Delta\mathsf{F} \leq \mathsf{W}_\mathsf{F}$

Kelvin-Planck statement of 2nd Law: $W_F + W_R \ge 0$

(no free lunch)

Kelvin-Planck statement of 2nd Law: $\langle W \rangle_F + \langle W \rangle_R \ge 0$ (no free lunch... on average)

$$\frac{\rho_F(+W)}{\rho_R(-W)} = \exp[\beta(W - \Delta F)]$$

G.E. Crooks, PRE 1999

Unfolding & refolding of ribosomal RNA

$$\frac{\rho_{unfold}(+W)}{\rho_{refold}(-W)} = \exp[\beta(W - \Delta F)]$$

Nonequilibrium work relations

macro	micro
$W \ge \Delta F$	$\langle W \rangle \ge \Delta F$
$-W_R \leq \Delta F \leq W_F$	$-\left\langle W\right\rangle _{R}\leq\Delta F\leq\left\langle W\right\rangle _{F}$

Nonequilibrium work relations

closely related to *Fluctuation Theorems* for entropy production* and to early work by Bochkov & Kuzovlev[†]

> * Evans, Cohen, Morriss, Gallavotti, Searles, Kurchan, Lebowitz, Spohn, Maes + many others
> † JETP 1977, 1979

Nonequilibrium work relations

macro	micro
$W \ge \Delta F$	$\left\langle e^{-\beta W} \right\rangle = e^{-\beta \Delta F}$
$-W_R \leq \Delta F \leq W_F$	$\frac{\rho_F(+W)}{\rho_R(-W)} = \exp[\beta(W - \Delta F)]$
	•••

- apply far from equilibrium
- validated in experiments
- applications: analysis of single-molecule experiments
 & computational thermodynamics
- irreversibility and the arrow of time at the nanoscale

The thermodynamic arrow of time

Make a movie of a thermodynamic process $(A \rightarrow B)$

Macroscopic system: $W > \Delta F$ if the movie is run forward $W < \Delta F$ if the movie is run backward

... perfect correlation between sign(W- Δ F) and the chronological ordering of events.

The arrow of time is *sharp*.

The thermodynamic arrow of time

Make a movie of a thermodynamic process $(A \rightarrow B)$

Microscopic system:

typically $W > \Delta F$ if the movie is run forwardtypically $W < \Delta F$ if the movie is run backward

... but there are exceptions (fluctuations).

The arrow of time is *blurred*.

How frequently do these exceptions occur?

Irreversibility in microscopic systems

 $\rightarrow \rho(W)$ is *exponentially suppressed* in the thermodynamically forbidden region

<u>Hysteresis</u>

The system evolves via one sequence of states during the forward process (stretching), but follows a different path during the reverse process (contraction).

Hysteresis = ?

The probability to observe one sequence of events (γ_F) during the forward process is different from that of observing the conjugate sequence (γ_R) during the reverse process.

$$P_F[\gamma_F] \neq P_R[\gamma_R]$$

Guessing the direction of time's arrow

You are shown a movie depicting a thermodynamic process, A→B. Task: determine whether you are viewing the events in the order in which they actually occurred, or a movie run backward of the reverse process.

e.g.

Relative entropy and time's arrow

Relative entropy D[f | g] provides a measure of the difference between two probability distributions f and g.

$$D[f \mid g] = \int f \ln \frac{f}{g} \ge 0$$

 $\begin{array}{lll} \mbox{forward process } \lambda : A \rightarrow B & p_F(x,t) \\ \mbox{reverse process } \lambda : A \leftarrow B & p_R(x,t) \end{array}$

use relative entropy to quantify irreversibility, by comparing p_F with p_R

notation: $W_{diss} = W - \Delta F$, dissipated work

Reversible processes λ=A $\lambda = \lambda_{int}$ **λ=B** p_F(x,t) p_F(x,t) p_F(x,t) t=0 $t=\tau/2$ **t**= τ t= τ/2 t= 0 t=τ p_R(x,t) p_R(x,t) $p_R(x,t)$

 $p_F(x,t) = p^{eq}(x; \lambda^F(t)) = p_R(x,\tau-t)$

Irreversible processes

 $p_F(x,t) \neq p^{eq}(x; \lambda^F(t)) \neq p_R(x,\tau-t)$

use relative entropy to quantify both hysteresis & lag:

 $D\left[p_{F} \mid p_{R}\right]_{\lambda} \leq \beta \langle W_{diss} \rangle_{F} \quad \text{Kawai, Parrondo, Van den Broeck, PRL 2007}$ $D\left[p_{F} \mid p^{eq}\right]_{t} \leq \beta \langle W_{diss}(t) \rangle_{F} \quad \text{Vaikuntanathan \& CJ, EPL 2009}$

$$D[p \mid p^{eq}]_{t} \leq \beta \langle W_{diss}(t) \rangle$$

$$\rightarrow D[p_{\tau} \mid p_{B}^{eq}] \leq \beta \langle W_{diss} \rangle$$

$$\rightarrow \langle W \rangle \geq \Delta F + k_{B} T D[p_{\tau} \mid p_{B}^{eq}]$$

2nd Law

At the nanoscale ...

• the 2nd law can be represented by equalities

$$\left\langle e^{-\beta W} \right\rangle = e^{-\beta \Delta F}$$
, $\frac{\rho_F(+W)}{\rho_R(-W)} = \exp[\beta(W - \Delta F)]$, & others

• the arrow of time is blurred, but can be quantified